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Abstract

We provide a method for deciding the insecurity of cryptographic protocols in pres-
ence of the standard Dolev-Yao intruder (with a finite number of sessions) extended
with so-called oracle rules, i.e., deduction rules that satisfy certain conditions. As
an instance of this general framework, we obtain that protocol insecurity is in NP
for an intruder that can exploit the properties of the exclusive or (XOR) operator.
This operator is frequently used in cryptographic protocols but cannot be handled
in most protocol models. An immediate consequence of our proof is that checking
whether a message can be derived by an intruder (using XOR) is in PTIME. We also
apply our framework to an intruder that exploits properties of certain encryption
modes such as cipher block chaining (CBC).
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1 Introduction

Cryptographic protocols have been designed for handling secure electronic
communications. Verification tools based on formal methods (e.g. model check-
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ing) have been quite successful in discovering new flaws in published security
protocols [18,23,29,9,3,4].

While most formal analysis of security protocols abstracts from algebraic prop-
erties of operators, such as the multiplicativity of RSA or the properties in-
duced by chaining methods for block ciphers, many real attacks and protocol
weaknesses rely on these properties. A typical example is an attack on Bull’s
recursive authentication protocol first observed by Ryan and Schneider [28]:
The protocol is used to distribute a connected chain of keys linking all the
nodes from the originator to the server. Ryan and Schneider show that if one
key is compromised the others can be compromised too thanks to the prop-
erty of the exlusive or (XOR). Conversely, if XOR is considered a free operator
then, as shown by L. Paulson using the Isabelle prover [25], the protocol is
secure.

Recently, several procedures have been proposed to decide insecurity of cryp-
tographic protocols w.r.t. a finite number of protocol sessions [1,5,15,27,22,17].
Moreover, some special cases for an unbounded number of sessions have been
studied [13,14,11,2] (see also [20,30] for related work). All these results assume
encryption to be perfect (perfect encryption assumption): One needs a decryp-
tion key to extract the plaintext from the ciphertext, and also, a ciphertext can
be generated only with the appropriate key and message (no collision). Only
very few works on formal analysis have relaxed this assumption. In [21,16],
unification algorithms are designed for handling properties of Diffie-Hellman
cryptographic systems.

In this paper, we generalize the decidability result of [27], stating that insecu-
rity for finitely many protocol sessions is in NP, to the case where messages
may contain the XOR operator and where the Dolev-Yao intruder is extended
by the ability to compose messages with the XOR operator. More precisely,
we give a linear bound on the size of messages exchanged in minimal attacks
and present an NP procedure for deciding insecurity with XOR. This exten-
sion is non-trivial due to the complex interaction of the XOR properties and
the standard Dolev-Yao intruder rules. The technical problems raised by the
equational laws are somewhat related to those encountered in semantic unifi-
cation.

To prove our result, we have extended the Dolev-Yao intruder with so-called
oracle rules, i.e., deduction rules that satisfy certain conditions. In this general
framework we show that insecurity is decidable in NP. Now, the results for
XOR are obtained by proving that the XOR rules satisfy the conditions on
oracle rules.

Our framework is general enough to also handle other algebraic properties.
More specifically, we show that the Dolev-Yao intruder equipped with the
ability to exploit prefix properties of encryption algorithms based on cipher-
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block-chaining (CBC) also falls into our framework.

To the best of our knowledge, the decidability results presented here (see
also [6]) are the first, besides the ones by Comon and Shmatikov [12], that go
beyond the perfect encryption assumption. We briefly compare our work with
[12]: We prove that, in presence of the XOR operator, the problem of checking
whether a message can be derived by an intruder is in PTIME—this problem
is called derivation problem here and ground reachability problem in [12]. In
[12], the derivation problem is shown to be in NP for the XOR operator and for
abelian groups, respectively. As for the general insecurity problem, we show
NP-completeness based on a theorem that ensures the existence of attacks of
linear size. Comon and Shmatikov present a decision procedure with a higher
complexity. This procedure is based on constraint solving techniques. However,
they consider a more general class of protocol rules. In Section 3.2, we argue
that these more general rules are rather unrealistic. Finally, we believe that our
framework is quite general in the sense that different intruders with different
deduction capabilities can be captured such as those for exploiting properties
of encryption based on block ciphers (see Section 7).

Structure of the paper. In the following section, we provide an example il-
lustrating the role of XOR in attacks. We then, in Section 3, introduce our
protocol and intruder model. In particular, this section contains the definition
of the oracle rules. The decidability result for the general framework is pre-
sented in Section 4, including the description of the NP decision algorithm.
Proofs are provided in Section 5 and 6. Then, in Section 7, XOR rules and
prefix rules are introduced and it is shown that these rules are oracle rules,
which implies the mentioned complexity results. This section also contains an
example illustrating the additional power of prefix rules in attacks.

2 A Motivating Example

We demonstrate that when taking the algebraic properties of XOR into ac-
count, new attacks can occur. As an example, we use a variant of the Needham-
Schroeder-Lowe Protocol [19], i.e., the public-key Needham-Schroeder Proto-
col with Lowe’s fix, where in some place, instead of concatenation XOR is
used. Using common notation (e.g. {m}pKX

denotes the encryption of message
m with the public key of agent X), the protocol is given as follows:

1. A→ B : {NA, A}pKB

2. B → A : {NB,xor(NA, B)}pKA

3. A→ B : {NB}
p
KB
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If XOR is interpreted as free symbol, such as pairing, then according to [19]
this protocol is secure. In particular, the intruder is not able to get hold of
NB. However, if the algebraic properties of XOR are taken into account, the
following attack is possible, which is a variant of the original attack on the
Needham-Schroeder Protocol and which allows the intruder I to obtain NB. In
this attack, two sessions run interleaved where the steps of the second session
are marked with ′. In the first session, A talks to the intruder I, and in the
second session I, purporting to be A, talks to B.

1. A→ I : {NA, A}pKI

1’. I(A)→ B : {xor(NA, B, I), A}pKB

2’. B → I(A) : {NB,xor(NA, B, I, B)}pKA

2. I → A : {NB,xor(NA, B, I, B)}pKA

3. A→ I : {NB}
p
KI

In step 1’. of this attack, I first decrypts the message {NA, A}pKI
to obtain NA

and A. Then I applies the XOR operator to compute xor(NA, B, I), before
this message together with A is encrypted for B. In 2’. and 2. it is used
that the messages xor(NA, B, I, B) and xor(NA, I) are equivalent w.r.t. the
properties of XOR, i.e., xor(NA, B, I, B) =xor xor(NA, I), and hence, the
message in 2. has the form as expected by A. We emphasize that without the
intruder’s ability to apply the XOR operator and without taking into account
algebraic properties of XOR, this attack could not be carried out.

3 The Protocol and Intruder Model

The protocol and intruder model we describe here extends standard models
for the (automatic) analysis of security protocols [1,14,27,22] in two respects.
First, messages can be build using the XOR operator, which is not allowed in
most other protocol models. Second, in addition to the standard Dolev-Yao
rewrite rules, the intruder is equipped with the above mentioned oracle rules.
In what follows, we provide a formal definition of our model by defining terms,
messages, protocols, the intruder, and attacks.

3.1 Terms and Messages

First, recall that a finite multiset over a set S is a function M from S to IN
with finite domain. We use the common set notation to define multisets. For
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example, {a, a, a, b} denotes the multiset M with M(a) = 3, M(b) = 1, and
M(x) = 0 for every x /∈ {a, b}.

Terms are defined according to the following grammar:

term ::= A |V | 〈term, term〉 | {term}s
term
| {term}pK |xor(M)

where A is a finite set of constants (atomic messages), containing principal
names, nonces, keys, and the constants 0 and secret;K is a subset ofA denoting
the set of public and private keys; V is a finite set of variables; and M is a non-
empty finite multiset of terms. We assume that there is a bijection ·−1 on K
which maps every public (private) key k to its corresponding private (public)
key k−1. The binary symbol 〈·, ·〉 is called pairing, the binary symbol {·}s· is
called symmetric encryption, the binary symbol {·}p· is public key encryption.
Note that a symmetric key can be any term and that for public key encryption
only atomic keys (namely, public and private keys from K) can be used. A term
with head xor is called non-standard and otherwise it is called standard.
Because of the algebraic properties of xor (see below), it is convenient to
define the xor operator as done above, instead of defining it as a binary
operator. We abbreviate xor({t1, . . . , tn}) by xor(t1, . . . , tn).

Variables are denoted by x, y, terms are denoted by s, t, u, v, and finite
sets of terms are written E,F, ..., and decorations thereof, respectively. We
abbreviate E ∪ F by E,F , the union E ∪ {t} by E, t, and E \ {t} by E \ t.
The same abbreviations are used for multisets.

For a term t and a set of terms E, V(t) and V(E) denote the set of variables
occurring in t and E, respectively.

A ground term (also called message) is a term without variables. A (ground)
substitution is a mapping from V to the set of (ground) terms. The application
of a substitution σ to a term t (a set of terms E) is written tσ (Eσ), and is
defined as usual.

Given two terms u, v, the replacement of u by v, denoted by [u ← v], maps
every term t to the term t[u ← v] which is obtained by replacing all occur-
rences of u in t by v. Note that the result of such a replacement is uniquely
determined. We can compose a substitution σ with a replacement δ: the sub-
stitution σδ maps every x ∈ V to σ(x)δ.

The multiset of factors of a term t, denoted by F(t), is recursively defined:
If t = xor(M), then F(t) = dt′∈MF(t′), and otherwise, if t is standard,
F(t) = {t}, where d is the union of multisets. Note that F(t) only contains
standard terms. For example, with a, b, c ∈ A, F(xor(c, 〈xor(a, b), c〉 , c)) =
{c, c, 〈xor(a, b), c〉}.
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The set of subterms of a term t, denoted by S(t), is defined as follows:

• If t ∈ A or t ∈ V , then S(t) = {t}.
• If t = 〈u, v〉, {u}sv, or {u}pv, then S(t) = {t} ∪ S(u) ∪ S(v).
• If t is non-standard, then S(t) = {t} ∪

⋃

u∈F(t) S(u).

We define S(E) =
⋃

t∈E S(t). Note that xor(a, b) 6∈ S(xor(xor(a, b), c)).

We define the size of a term and a set of terms basically as the size of the
representation as a Directed Acyclic Graph (DAG). That is, the (DAG) size
|t| (resp. |E|) of a term t (resp. a set of terms E) is the cardinality of the set
S(t) (resp. S(E)). Note that | · | applied to a set of terms will always denote
the DAG size of the set rather than its cardinality.

The XOR operator is considered to be commutative, associative, nilpotent,
and 0 is the unit element. According to these properties, the normal form of a
term is defined as the result of the normalization function pq : term → term.
Before providing the formal definition of this function, we illustrate it by some
examples:

If a, b, c, d ∈ A, then

pxor(xor(a, b, d), xor(c, d))q = xor(a, b, c)

p〈xor(0, a, a, b, c),xor(a,xor(a, c))〉q = 〈xor(b, c), c〉

pxor(a, 〈xor(b), a〉 , c)q = xor(a, 〈b, a〉 , c).

However,

pxor(〈a, b〉 , 〈a, c〉)q 6= 〈0,xor(b, c)〉 .

Formally, the normalization function is recursively defined as follows:

• paq = a for an atom or a variable a,
• p〈u, v〉q =

〈

puq, pvq
〉

, p{u}svq = {puq}s
pvq

, and p{u}pvq = {puq}pv for terms u and
v,
• For a non-standard term t, define Mt to be the multiset of factors of t in

normalized form, i.e.,

Mt(t
′) =







∑

t′′,pt′′q=t′

F(t)(t′′)





 mod 2

for every term t′ 6= 0, and Mt(0) = 0. (Recall that F(t) is a multiset.) Now,
if Mt(t

′) = 0 for every t′, then we set ptq = 0. If Mt(t
′) 6= 0 for exactly one

t′, then we define ptq = t′. Otherwise, we set ptq = xor(Mt).

The normalization function extends to sets, multisets of terms, and substi-
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tutions in the obvious way. A term t is normalized if ptq = t. In the same
way normalized sets, multisets of terms, and substitutions are defined. Two
terms t and t′ are equivalent (modulo XOR) if ptq = pt′q. In this case, we write
t =xor t′.

One easily shows:

Lemma 1 For every n ≥ 0, term t, and substitution σ:

(1) |ptq| ≤ |t|, and
(2) ptσq = pptqσq = ptpσqq = pptqpσqq.

We finally remark:

Remark 2 For every normalized term t with |t| ≤ n, the number of arguments
of XOR operators occurring in t is bounded by n. Therefore, representing t (as
a DAG) needs space polynomially bounded in n.

3.2 Protocols

The following definition of protocol rules, protocols, and execution orderings
is explained below.

Definition 3 A protocol rule is of the form R ⇒ S where R and S are
terms. A protocol P is a tuple ({Ri ⇒ Si, i ∈ I}, <I , E) where E is a finite
normalized set of messages with 0 ∈ E, the initial intruder knowledge, I is a
finite (index) set, <I is a partial ordering on I, and Ri ⇒ Si, for every i ∈ I,
is a protocol rule such that

(1) the terms Ri and Si are normalized;
(2) for all x ∈ V(Si), there exists j ≤I i such that x ∈ V(Rj);
(3) for every subterm xor(t1, . . . , tn) of Ri, there exists k ∈ {1, . . . , n} such

that V(tl) ⊆ ∪j<IiV(Rj) for every l ∈ {1, . . . , n} \ {k}. (Note that, since
Ri is normalized, t1, . . . , tn are standard terms.)

A bijective mapping π : I ′ → {1, . . . , p} is called execution ordering for P if
I ′ ⊆ I, p is the cardinality of I ′ and for all i, j we have that if i <I j and
π(j) is defined, then π(i) is defined and π(i) < π(j). Let p be the size of π.

Given a protocol P , in the following we will assume that A is the set of
constants occurring in P . We define S(P ) = E ∪

⋃

i∈I(Ri ∪ Si)) to be the set
of subterms of P , |P | = |S(P )| to be the (DAG) size of P , and V = V(P ) to
be the set of variables occurring in P .

Intuitively, when executing a rule Ri ⇒ Si and on receiving a (normalized)
message m in a protocol run, it is first checked whether m and Ri match,
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i.e., whether there exists a ground substitution σ such that m =xor Riσ.
If so, pSiσq is returned as output. We always assume that the messages ex-
changed between principals (and the intruder) are normalized — therefore, m
is assumed to be normalized and the output of the above rule is not Siσ but
pSiσq. This is because principals and the intruder cannot distinguish between
equivalent terms, and therefore, they may only work on normalized terms (rep-
resenting the corresponding equivalence class of terms). Finally, we note that
since the different protocol rules may share variables, some of the variables in
Ri and Si may be binded already by substitutions obtained from applications
of previous protocol rules. We are not actually interested in a normal execu-
tion of a protocol but rather in attacks on a protocol. This is the reason why
the definition of a protocol contains the initial intruder knowledge. Attacks
are formally defined in Section 3.3.

Before we explain Conditions 1.–3. in Definition 3, we formalize the protocol
informally described in Section 2: The set of atoms is

A = {na, a, I, b, ka, kb, ki, ki−1, 0, secret}

where in Section 2 the secret was NB. The initial intruder knowledge is S0 =
{0, I, ki, ki−1, ka, kb}. The protocol rules are the following, where we have only
retained the rules that are used in the attack:

(a, 1) : 0 ⇒ {〈na, a〉}pki

(a, 2) : {〈xsecret,xor(na, I)〉}pka ⇒ {xsecret}
p

ki

(b, 1) : {〈xna, a〉}
p
kb ⇒ {〈secret,xor(xna, b)〉}

p
ka

Obviously, Conditions 1.–3. are satisfied. We have I = {(a, 1), (a, 2), (b, 1)}
and <I= {((a, 1), (a, 2))}.

We now discuss the three conditions of Definition 3. Condition 1. is not a real
restriction since, due to Lemma 1, the transformation performed by a protocol
rule and its normalized variant coincide. Condition 2. guarantees that when
with Si an output is produced, the substitutions of all variables in Si are de-
termined already. Otherwise, the output of a protocol rule would be arbitrary,
which is of course undesirable. For instance, if a protocol contains a protocol
rule of the form a ⇒ x where the variable x occurs for the first time, then
x can be substituted by an arbitrary message, and hence, arbitrary output
can be produced by this rule. By Condition 2. such undesirable phenomena
are excluded. Condition 3. guarantees that when applying a protocol rule, the
substitution of the variables in this rule can uniquely and immediately be de-
termined when given the input from the intruder for this rule. For example, if
a protocol contains a rule of the form xor(x, y)⇒ 〈x, y〉 where the variables
x and y occur for the first time, then this protocol violates Condition 3: On
receiving xor(a, b, c), for instance, infinitely many substitutions are possible,
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including {x 7→ xor(a, b), y 7→ c}, {x 7→ xor(b, 〈a, a〉), y 7→ xor(a, c, 〈a, a〉)},
{x 7→ xor(b, 〈a, 〈a, a〉〉), y 7→ xor(a, c, 〈a, 〈a, a〉〉)} etc. In other words, a prin-
cipal can arbitrarily pick a substitution out of infinitely many possible substi-
tutions. With Condition 3. we avoid this. The following two examples illustrate
that when Condition 3. is not satisfied, then this is due to an “unreasonable”
specification of the protocol.

We start with a very simple protocol which contains two rules, (A,i) and (A,j),
where (A,i) preceeds (A,j). Intuitively, these rules are part of a description of
a principal A who would first apply (A, i) before performing (A, j):

(A, i) : xor(x, y) ⇒ · · ·
...

(A, j) : x ⇒ y

Informally speaking, in (A, i) principal A accepts a message which A believes
to be of the form xor(x, y). However, since neither x nor y is known at this
point, A has to accept any message. Only when performing (A, j) one part of
the message, namely x, is determined, and from this together with xor(x, y)
A can compute the second part, y. The problem with the above description
is that (A, i) cannot be performed deterministically. Principal A has to guess
some x and y (infinitely many subsitutions are possible). Only later if (A, j) is
performed x and y can be determined. However, in an attack (A, j) might never
be applied. This phenomenon will occur in every protocol where Condition
3. is not satisfied and it is due to an ill-defined protocol specification. In the
example, the way the protocol should be modeled is the following:

(A, i) : z ⇒ · · ·
...

(A, j) : x ⇒ xor(z, y)

Obviously, in this formulation of the protocol Condition 3. is satisfied.

The second example presents a protocol where a message is received at one
point of the protocol run and decrypted at a subsequent step. In the informal
Alice and Bob notation, the protocol is stated as follows:

1. A → B : xor({Na}
s

K , {B}sK)

2. B → A : xor({Na}
s

K , {B}sK , B)

3. A → B : K

4. B → A : Na
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In this protocol, principal B receives {Na}K ⊕ {B}K from A and returns
{Na}

s

K ⊕ {B}
s

K ⊕B. When A sends the key K, B is able to retrieve Na from
the message previously received from A. The following is a näıve formalization
of this protocol where the partial ordering of the rules is defined in the obvious
way:

(A, 1) : 0 ⇒ xor({Na}
s

K , {B}sK)

(B, 1) : xor({x}y , {B}y) ⇒ xor({x}y , {B}y , B)

(A, 2) : xor({Na}
s

K , {B}sK , B) ⇒ K

(B, 2) : y ⇒ x

First note that because of (B, 1), Condition 3. is not satisfied. However, this
formulation of the protocol is unrealistic because in (B, 1) principal B only
accepts messages which are obtained as the xor of two encrypted messages
whose key and in case of the first encrypted message whose plaintext B does
not know. Hence, in a realistic implementation B is not able to check whether
the received message has the required form, but rather has to accept any
message. The protocol should therefore be stated as follows:

(A, 1) : 0 ⇒ xor({Na}
s

K , {B}sK)

(B, 1) : z ⇒ xor(z, B)

(A, 2) : xor({Na}
s

K , {B}sK , B) ⇒ K

(B, 2) : y ⇒ {z}sNb

(B, 3) : xor(
{

{x}sy , {B}sy
}s

Nb
) ⇒ x

where Nb is a fresh nonce which is only known to B. In step (B, 2) and (B, 3)
we describe that B receives a message y, supposingly K, which is then used to
extract Na from (the message substituted for) z. Note that this formulation
of the protocol satisfies Condition 3.

We point out that in [12] no restrictions on protocol rules are put, and thus, as
illustrated above, also “unreasonable” protocol specifications, where Condition
3. is not satisfied, are allowed.

3.3 The Intruder Model and Attacks

Our intruder model follows the Dolev-Yao intruder [13]. That is, the intruder
has complete control over the network and he can derive new messages from
his initial knowledge and the messages received from honest principals dur-
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ing protocol runs. To derive a new message, the intruder can compose and
decompose, encrypt and decrypt messages, in case he knows the key. What
distinguishes the intruder we consider here from the standard Dolev-Yao in-
truder, is that we will equip the intruder with guess rules, which provide him
with additional capabilities of deriving messages. In Section 3.4, we consider
classes of guess rules with certain properties, so-called oracle rules. As men-
tioned, in Section 7 we will look at two different instances of these oracle rules,
namely XOR and prefix rules.

The intruder derives new messages from a given (finite) set of message by
applying intruder rules. An intruder rule (or t-rule) L is of the form M → t,
where M is a finite multiset of messages and t is a message. Given a finite set
E of messages, the rule L can be applied to E if M is a subset of E, in the
sense that if M(t′) 6= 0, then t′ ∈ E for every message t′. We define the step
relation →L induced by L as a binary relation on (finite) sets of messages.
For every finite set of messages E we have E →L E, t (recall that E, t stands
for E ∪ {t}) if L is a t-rule and L can be applied to E. If L denotes a (finite
or infinite) set of intruder rules, then →L denotes the union

⋃

L∈L →L of the
step relations→L with L ∈ L. With→∗

L we denote the reflexive and transitive
closure of →L.

The set of intruder rules we consider in this paper is depicted in Figure 1. In
this table, a, b denote (arbitrary) messages, K is an element of K, and E is a
finite set of messages (considered as multiset).

We emphasize that the notion of intruder rule will always refer to the rules
listed in Figure 1. For now, there may be any set of guess rules of the kind
shown in Figure 1, later we will consider certain classes of guess rules, namely
oracle rules.

We refer to certain sets of intruder rules using the notation as depicted in
Figure 1. For example, Lp1(〈a, b〉) refers to the singleton set {〈a, b〉 → a} and
Lc(〈a, b〉) to the singleton set {a, b → 〈a, b〉}. In the same way Lp2(〈a, b〉),
Lad({a}

p
K), Lsd({a}

s
b), Lc({a}

p
K), and Lc({a}

s
b) define sets consisting of one in-

truder rule. With Lod(a) and Loc(a) we denote (finite or infinite) sets of guess
rules. Note that, even if no guess rules are considered, i.e., for every message a
the sets Lod(a) and Loc(a) are empty, the number of decomposition and com-
position rules is always infinite since there are infinitely many messages a, b.
The reason Lp1(〈a, b〉), Lp2(〈a, b〉), Lad({a}

p
K), Lsd({a}

s
b), Lc(〈a, b〉), Lc({a}

p
K),

and Lc({a}
s
b) denote singletons rather than intruder rules is simply notational

convenience.

We further group the intruder rules as follows. In the following, t ranges over
all messages.

• Ld(t) = Lp1(t) ∪ Lp2(t) ∪ Lad(t) ∪ Lsd(t) for every message t. In case, for
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instance, Lp1(t) is not defined, i.e., the head symbol of t is not a pair, then
Lp1(t) = ∅; analogously for the other rule sets,
• Ld =

⋃

t Ld(t), Lc =
⋃

t Lc(t),
• Lod =

⋃

t Lod(t), Loc =
⋃

t Loc(t),
• Lo(t) = Loc(t) ∪ Lod(t), Lo = Loc ∪ Lod,
• Ld(t) is the set of all decomposition t-rules in Figure 1, i.e., all t-rule in the

left column of the table,
• Ld =

⋃

t Ld(t),
• Lc(t) is the set of all composition t-rules in Figure 1.
• Lc =

⋃

t Lc(t).
• L = Ld ∪ Lc.

Note that L denotes the (infinite) set of all intruder rules we consider here.
The set of messages the intruder can derive from a (finite) set E of messages
is:

forge(E) =
⋃

{E ′ | E →∗
L E ′}.

From the definition of intruder rules in Figure 1 it immediately follows:

Lemma 4 If E is a normalized set of messages, then forge(E) is normalized.

The lemma says that if an intruder only sees normalized messages, then he only
creates normalized messages. Intruders should be modeled in such a way that
they cannot distinguish between equivalent messages since if one thinks of,
for instance, the message xor(a, a, b), which is equivalent to b, as a bit string
obtained by “XORing” the bit strings a, a, and b, then this bit string is simply
b. Therefore, in what follows we always assume that the intruder’s knowledge
consists of a set of normalized messages, where every single normalized message
in this set can be seen as a representative of its equivalence class.

We are now prepared to define attacks. In an attack on a protocol P , the
intruder (nondeterministically) chooses some execution order for P and then
tries to produce input messages for the protocol rules. These input messages
are derived from the intruder’s initial knowledge and the output messages
produced by executing the protocol rules. The aim of the intruder is to derive
the message secret. If different sessions of a protocol running interleaved shall
be analysed, then these sessions must be encoded into the protocol P . This is
the standard approach when protocols are analysed w.r.t. a bounded number
of sessions, see, for instance, [27].

Definition 5 Let P = ({R′
j ⇒ S ′

j | j ∈ I}, <I , S0) be a protocol. Then
an attack on P is a tuple (π, σ) where π is an execution ordering on P
and σ is a normalized ground substitution of the variables occurring in P
such that pRiσq ∈ forge(pS0, S1σ, ..., Si−1σq) for every i ∈ {1, . . . , k} where
k is the size of π, Ri = R′

π−1(i), and Si = S ′
π−1(i), and such that secret ∈

forge(pS0, S1σ, ..., Skσq).
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Decomposition rules Composition rules

Pair Lp1(〈a, b〉): 〈a, b〉 → a Lc(〈a, b〉): a, b→ 〈a, b〉

Lp2(〈a, b〉): 〈a, b〉 → b

Asym. Lad({a}
p
K): {a}pK , K−1 → a Lc({a}

p
K): a,K → {a}pK

Sym. Lsd({a}
s
b): {a}

s
b, b→ a Lc({a}

s
b): a, b→ {a}sb

Guess Lod(a): E → a Loc(a): E → a with

with a subterm of E E, a normalized and such

and E normalized. that every proper subterm

of a is a subterm of E.

Figure 1. Intruder Rules

Due to Lemma 1, it does not matter whether, in the above definition, σ is nor-
malized or not. Also note that Lemma 4 implies: pforge(pS0, S1σ, ..., Si−1σq)q =
forge(pS0, S1σ, ..., Si−1σq).

The decision problem we are interested in is the following set of protocols:

Insecure = {P | there exists an attack on P}.

3.4 Oracle Rules

Oracle rules are guess rules which satisfy certain conditions. To define these
rules, we first need some new notions.

A derivation D of length n, n ≥ 0, is a sequence of steps of the form E →L1

E, t1 →L2
· · · →Ln

E, t1, . . . , tn with a finite set of messages E, messages
t1, . . . , tn, intruder rules Li ∈ L, such that E, t1, . . . , ti−1 →Li

E, t1, . . . , ti and
ti 6∈ E ∪ {t1, . . . , ti−1}, for every i ∈ {1, . . . , n}. The rule Li is called the ith
rule in D and the step E, t1, . . . , ti−1 →Li

E, t1, . . . , ti is called the ith step in
D. We write L ∈ D to say that L ∈ {L1, . . . , Ln}. If S is a set of intruder
rules, then we write S /∈ D to say S ∩ {L1, . . . , Ln} = ∅. The message tn is
called the goal of D.

We also need well-formed derivations which are derivations where every mes-
sage generated by an intermediate step either occurs in the goal or in the
initial set of messages.

Definition 6 Let D = E →L1
. . .→Ln

E ′ be a derivation with goal t. Then,
D is well-formed if for every L ∈ D and t′ we have that L ∈ Lc(t

′) implies

13



t′ ∈ S(E, t), and L ∈ Ld(t
′) implies t′ ∈ S(E).

We can now define oracle rules. Condition 1. in the following definition will
allow us to bound the length of derivations. Condition 2. says that to derive a
from E it is not necessary to first compose a message t from E using an oracle
rule and then decompose t to obtain a. Condition 3. allows us to replace a
message u which can be composed from F \u by a smaller message ε(u) in an
application of an oracle rule. Conditions 2. and 3. together are later used (see
Section 6) to bound the size of the substitution σ of an attack. They allow us
to replace a subterm u in σ, composed by the intruder, by a smaller message.

Definition 7 Let Lo = Loc ∪ Lod be a (finite or infinite) set of guess rules,
where Loc and Lod denote disjoint sets of composition and decomposition guess
rules, respectively. Then, Lo is a set of oracle rules (w.r.t. Lc ∪ Ld as defined
above) iff:

(1) For every message t, if t ∈ forge(E), then there exists a well-formed
derivation from E with goal t.

(2) If F →Loc(t) F, t and F, t →Ld(t) F, t, a, then there exists a derivation D
from F with goal a such that Ld(t) 6∈ D.

(3) For every non atomic message u, there exists a normalized message ε(u)
with |ε(u)| < |puq| such that: For every finite set F of messages with
0 ∈ F , if F \ u →Lc(u) F , i.e., u can be composed from F \ u in one
step, then F →Lo(t) F, t implies pt[u← ε(u)]q ∈ forge(pF [u← ε(u)]q) and
ε(u) ∈ forge(F ) for every message t.

In Section 7 we will present sets of oracle rules. An example for guess rules
which do not form a set of oracle rules is the following: Lod(t) = {{t}sc → t}
and Loc({t}

s
〈a,b〉) = {{t}s〈a,b〉 → {t}

s
c} where t is an arbitrary message and a, b, c

are fixed atomic messages. That is, Loc({t}
s
〈a,b〉) allows to turn an encryption

with key 〈a, b〉 into an encryption with key c. Using Lod(t) such a message can
then be decrypted. It is easy to check that neither of the three conditions in
Definition 7 is satisfied.

4 Main Theorem and the NP Decision Algorithm

We now state the main theorem of this paper. In Section 7, this theorem will
allow us to show that Insecure is in NP in presence of an intruder that uses
XOR rules and prefix rules, respectively.

Theorem 8 Let Lo be a set of oracle rules. If E → t ∈? Lo can be checked
in polynomial time in |E, t| for every finite set E of messages and message t,
then Insecure is in NP.
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Input: protocol P = ({Rι ⇒ Sι, ι ∈ I}, <I , S0) with n = |P |, V =
V ar(P ).
(1) Guess an execution order π for P . Let k be the size of π.

Let Ri = R′
π−1(i) and Si = S ′

π−1(i) for i ∈ {1, . . . , k}
(2) Guess a normalized ground substitution σ such that |{σ(x) | x ∈

V }| ≤ 3n.
(3) Check that pRiσq ∈ forge(p{Sjσ | j < i} ∪ {S0}q) for every i ∈
{1, . . . , k}.

(4) Check secret ∈ forge(p{Sjσ | j < k + 1} ∪ {S0}q).
(5) If each check is successful, then answer “yes”, and otherwise, “no”.

Figure 2. NP Decision Procedure for Insecurity

The NP decision procedure is given in Figure 2. In the following two sections,
we show that this procedure is sound and complete, and that it runs in non-
deterministic polynomial time. From this, Theorem 8 follows immediately.

Clearly, the procedure is sound. In Section 5 we show that the procedure runs
in non-deterministic polynomial time. To this end, we prove that the deriva-
tion problem (called ground reachability problem in [12]) can be decided in
polynomial time (Theorem 9). This result is of independent interest. As a
corollary, we obtain the desired complexity bound (Corollary 10). Complete-
ness of our procedure is then established in Section 6 where we show that if
there exists an attack (π, σ) on P , then there is one with the size of σ bounded
as in step 2. of the procedure (Theorem 20).

5 Deciding the Derivation Problem

The derivation problem is defined as follows:

DERIVE = {(E, t) | t ∈ forge(E)}

where E is a finite set of messages and t is a message, both given as DAGs.

We show:

Theorem 9 DERIVE ∈ PTIME given that E → t ∈? Lo can be checked in
polynomial time in |E, t| for every finite set E of messages and message t.

Proof. Let dt(E) be the set consisting of the messages in E and the messages
t′ ∈ S(E, t) that can be derived from E in one step. Using that the number of
terms t′ ∈ S(E, t) is linear in |E, t| and that E → t ∈? Lo can be checked in
polynomial time it is easy to see that dt(E) can be computed in polynomial
time in |E, t|. Now, if t ∈ forge(E), then Definition 7 guarantees that there
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exists a well-formed derivation D = E →L1
E, t1 → . . . →Lr

E, t1, .., tr, with
tr = t. In particular, ti ∈ Sub(E, t) for every i ∈ {1, . . . , k}. By definition of
derivations, all ti are different. It follows r ≤ |t, E|. Moreover, with d0

t (E) = E

and dl+1
t (E) = dt(d

l
t(E)) we have that t ∈ d

|E,t|
t (E) iff t ∈ forge(E). Since

d
|E,t|
t (E) can be computed in polynomial time, Theorem 9 follows. ¤

As an immediate consequence we obtain:

Corollary 10 The procedure depicted in Figure 2 runs in polynomial time in
|P | given that E → t ∈? Lo can be checked in polynomial time in |E, t| for
every finite set E of messages and message t.

Proof. It suffices to observe that the steps 3. and 4. of our procedure can
be performed in deterministic polynomial time in |P |. Given σ with |{σ(x) |
x ∈ V }| ≤ 3n and using Lemma 1 we have that |pRiσ, S0σ, . . . , Si−1σq| ≤
|Riσ, S0σ, . . . , Si−1σ| ≤ |Ri, S0, . . . , Si−1, σ(V)| ≤ |P |+3·|P | ≤ 4·|P |. Similarly

for
∣

∣

∣

psecret, S0σ, . . . , Skσq
∣

∣

∣. Hence, using Theorem 9 it follows that step 3.-4. of

our procedure can be performed in deterministic polynomial time in |P |. ¤

6 Linear Bounds on Attacks

We now show that the size of an attack can be bounded as required in step
2. of the algorithm depicted in Figure 2.

In what follows, we assume that Lo is a set of oracle rules. If t ∈ forge(E), we
denote by Dt(E) a well-formed derivation from E with goal t (chosen arbitrar-
ily among the possible ones). Note that there always exists such a derivation
since the definition of oracle rules ensures that a well-formed derivation exists
iff a derivation exists.

Definition 11 Let P = ({Ri ⇒ Si, i ∈ I}, <I , S0) be a protocol. An attack
(π, σ) is normal if |σ| = Σx∈V(P )|σ(x)| is minimal.

Clearly, if there is an attack, there is a normal attack. Note, however, that
normal attacks are not necessarily uniquely determined.

In Lemma 19 we prove, using Lemma 13 to 18, that normal attacks can always
be constructed by linking subterms that are initially occurring in the prob-
lem specification. This will allow us to bound the size of attacks as desired
(Theorem 20 and Corollary 10).

Let P = ({Rj ⇒ Sj, j ∈ I}, <I , S0) be a protocol such that (π, σ) is an
attack on P . Let k be the size of π. We define Ri = R′

π−1(i) and Si = S ′
π−1(i)
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Rj

r

y

t

Figure 3. Structure of Rj

for i ∈ {1, . . . , k}. Recall that S(P ) is the set of subterms of P , A ⊆ S(P ),
and V = V(S(P )) is the set of variables occurring in the protocol.

Definition 12 Let t and t′ be two terms and θ a ground substitution. Then, t
is a θ-match of t′, denoted t vθ t′, if t and t′ are standard, t is not a variable,
and ptθq = t′.

The following lemma says that standard subterms s occurring in the sub-
stitution σ of a normal attack start with a subterm of the protocol under
consideration or (at least) occur on the left hand-side of a protocol rule when
the substitution is applied. Note that even if s occurs in σ(x) and x occurs in
Ri, s does not need to occur in pRiσq because of the normalization.

Lemma 13 If (π, σ) is a normal attack, then for all i ∈ {1, . . . , k}, x ∈ V(Ri),
and standard subterms s of σ(x), there exists j ≤ i such that s ∈ S(pRjσq) or
there exists t ∈ S(P ) with t vσ s.

Proof. Assume that there exists i ∈ {1, . . . , k}, x ∈ V(Ri), and s standard
subterm of σ(x) such that for all j ≤ i: s /∈ S(pRjσq). Define

j = min{i′ | y ∈ V(Ri′) and s subterm of σ(y)}

and let y be a variable of Rj such that s is a subterm of σ(y). Note that j ≤ i,
and thus, s /∈ S(pRjσq). Let Sy,s be the set of subterms t of Rj such that
y ∈ V(t) and s is a subterm of ptσq. This subset contains y, and thus, is not
empty. Let t ∈ Sy,s be maximal in Sy,s w.r.t. the subterm ordering. We know
that t 6= Rj. Let r ∈ S(Rj) with t ∈ S(r) and there exists no r′ ∈ S(r) with
t ∈ S(r′). Then, since s /∈ S(prσq), r must be of the form xor(t, t1, . . . , tn)
with t, t1, . . . , tn standard (since Rj is normalized) and n ≥ 1 such that there
exists i ∈ {1, . . . , n}, say i = 1, with ptσq = pt1σq (s has been eliminated
by normalization). In particular, s ∈ S(pt1σq). (This situation is depicted in
Figure 3.)

Let Ms,t1 be the set of subterms t′ of t1 such that s ∈ S(pt′σq), and let ts be
minimal in Ms,t1 w.r.t. the subterm ordering. By Definition 3, (3), and since

17



y first appears in Rj, we have that for all z ∈ V(t1), there exists jz < j with
z ∈ V(Rjz

). Hence, by minimality of j, s is not a subterm of {σ(z)|z ∈ V(t1))},
and thus, ts /∈ V . Moreover, ts is standard by minimality (otherwise, since s
is standard, there would be a factor t′s of ts such that s ∈ S(pt′sσq)). Together,
this implies ptsσq = s and ts vσ s (recall that ts is minimal). ¤

Roughly speaking, the following Lemma 14 states that if a term γ can be
forged from a set of messages E by composing with Lc, say composing two
messages γ1 and γ2 both derived from E, then it is always possible to avoid
decomposing γ with Ld in a derivation from E with goal t for some t since
such a decomposition would generate a message γ1 or γ2 that can be derived
from E in another way.

First, we need some notation: If D1 = E1 → . . .→ F1 and D2 = E2 → . . .→
F2 are two derivations such that E2 ⊆ F1, then D = D1.D2 is defined as the
concatenation of the steps of D1 and the ones in D2. In addition, to obtain
a derivation, we delete in D the steps from D2 that generate terms already
present in F1.

Lemma 14 Let t ∈ forge(E) and γ ∈ forge(E) be given with a derivation Dγ

from E ending with an application of a rule in Lc. Then, there is a derivation
D′ from E with goal t satisfying Ld(γ) 6∈ D′.

Proof. By definition of a derivation, Ld(γ) 6∈ Dγ. Let D be Dγ without its last
rule, i.e., Dγ is D followed by some L ∈ Lc. Define D′′ = D.Dt(E) = D.D′′′

— D′′′ is obtained from Dt(E) by removing redundant steps. Note that D′′ is
a derivation with goal t. We distinguish two cases:

Assume L = Lc(γ). Then Ld(γ) /∈ D′′ since the (two) direct subterms of γ are
created in D, and thus, Ld(γ) /∈ D′′. In other words, D′ = D′′ is the derivation
we are looking for.

Assume L = Loc(γ). Then, if Ld(γ) /∈ D′′ setting D′ = D′′ we are done.
Otherwise, let F1 be the final set of messages of D. Now, Definition 7, (2)
implies that every step in D′′′ of the form F1, F2, γ →Ld(γ) F1, F2, γ, β can be
replaced by a derivation from F1, F2 with goal β that does not contain rules
from Ld(γ). Replacing steps in this way and then removing redundant steps
yields the derivation D′ we are looking for. ¤

The proof of the following lemma is trivial.

Lemma 15 For every normalized finite set E of messages, message t, and
t-rule L, if E →L E, t then all proper subterms of t are subterms of E.

Proof. For L ∈ Lod∪Loc use the definition of decomposition and composition
guess rules. For L ∈ Ld ∪ Lc the statement is obvious. ¤
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The next lemma states that if a term t′ is a subterm of a term t and this term
is derived from a set E but t′ is not a subterm of E, then t′ can be derived
from E and the last step of the derivation is a composition rule.

Lemma 16 Assume that t′ ∈ S(t)\S(E) and t ∈ forge(E), then t′ ∈ forge(E)
and there exists a (well-formed) derivation from E with goal t′ ending with a
composition rule.

Proof. Let D = E0 →L1
E1 · · · →Ln

En be a derivation of t from E0 = E.
Then, there exists a least i 6= 0 such that t′ ∈ S(Ei) since t′ is a subterm of
En. Assume that Li is an s-rule for some s. Then, t′ is a subterm of s. If t′

is a proper subterm of s, Lemma 15 implies that t′ is a subterm of Ei−1 in
contradiction to the minimality of i. Thus, t′ = s and therefore, t′ ∈ forge(E).
By the definition of oracle rules, there exists a well-formed derivation D′ of
t′. If the last step in this derivation is a decomposition rule, then this implies
t′ ∈ S(E) in contradiction to the assumption. Thus, the last step of D′ is a
composition rule. ¤

The subsequent lemma will allow us to replace certain subterms occurring in
a substitution of an attack by smaller terms. Note that from the assumption
made in this lemma it follows that s can be derived from E such that the last
rule is a composition rule. This allows to replace s by a smaller term since
when deriving t, decomposing s will not be necessary.

Lemma 17 Let E and F be two sets of normalized messages such that 0 ∈
E ∪ F . Let t ∈ forge(E,F ) and s ∈ forge(E) non atomic such that s /∈
S(E). Finally, let δ be the replacement [s← ε(s)], where ε(s) is defined as in
Definition 7. Then, ptδq ∈ forge(pEδ, Fδq).

Proof. Let Ds = E →L1
E, t1 →L2

. . .→Lp
E, t1, .., tp →Lc(s) E, t1, .., tp, s. By

induction on i and using Lemma 15, it follows that all proper subterms of ti

are subterms of E, t1, .., ti−1. Using s /∈ S(E) and s 6= ti, this implies s /∈ S(ti),
and thus, ptiδq = ti (note that ti is normalized) and ptiδq ∈ forge(pEδq), for
every i ∈ {1, . . . , p}. Thanks to Lemma 14, there exists a derivation D =
E,F, t1, .., tp →Lp+1

E,F, t1, .., tp+1 → . . . →Ln
E,F, t1, .., tn with tn = t and

Li /∈ Ld(s), for every i ∈ {p + 1, . . . , n}. We know ptiδq ∈ forge(pEδq), for
every i ∈ {1, . . . , p}. We show by induction on i, p ≤ i ≤ n, that ptiδq ∈
forge(pEδ, Fδq). For i = p this is by Definition 7, (4). Assume that i > p and
the property is true for all j < i. Then we have three cases:

- If Li = Lc(〈a, b〉), then either ti = s, and thus, using the definition of ε(s),
ptiδq = ε(s) ∈ forge(pEδ, Fδq), or ptiδq =

〈

paδq, pbδq
〉

∈ forge(pEδ, Fδq) since

{a, b} ⊆ E ∪ F ∪ {t1, .., ti−1}. Analogously for {a}sb and {a}pK .

- If Li = Lp1(〈ti, a〉), then s 6= 〈ti, a〉 since Li /∈ Ld(s), and therefore,
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ptiδq ∈ forge(p〈ti, a〉 δq) ⊆ forge(pEδ, Fδq) since 〈ti, a〉 ∈ E ∪ F ∪ {t1, .., ti−1}.
Analogously for Lp2, Lsd, and Lad.

- If Li ∈ Loc ∪ Lod, then thanks to Definition 7, (4), we have: ptiδq ∈
forge(pEδ, Fδ, t1δ, .., ti−1δq) and thus: ptiδq ∈ forge(pEδ, Fδq).

For i = n, this gives us ptδq ∈ forge(pEδ, Fδq). ¤

The next lemma will be used to remove one application of the normalization
function.

Lemma 18 Let σ be a normalized ground substitution, E a set of normalized
terms, s a normalized standard non atomic term, and δ the replacement [s←
ε(s)]. Let σ′ = σδ. If there is no standard subterm t of E such that t vσ s,
then pEσ′q = ppEσqδq.

Proof. Since there is no standard subterm t′ of E such that t′ vσ s, we have
(Eσ)δ = E(σδ) and therefore pEσ′q = p(Eσ)δq. Let us prove, by induction on
the structure of terms, that for all t ∈ S(E), we have ptσ′q = pptσqδq. This will
conclude the proof of the lemma.

• If t ∈ A, then t 6= s by assumption. Thus, pptσqδq = t = ptσ′q.
• If t ∈ V , then ptσq = tσ, and therefore, ptσ′q = p(tσ)δq = pptσqδq.

• If t = 〈v, w〉, we have s 6=
〈

pvσq, pwσq
〉

since otherwise t vσ s, and ptσ′q =
〈

pvσ′q, pwσ′q
〉

. By induction, this gives ptσ′q =
〈

ppvσqδq, ppwσqδq
〉

, and there-

fore, ptσ′q = pp〈vσ, wσ〉qδq = pptσqδq since s 6= ptσq. The cases t = {u}sv and
t = {u}pK are similar.
• If t = xor(T ), where T is a multiset of standard terms, we have:

ptσ′q = pxor({t′σ′ | t′ ∈ T })q

= pxor({pt′σ′q | t′ ∈ T })q (Definition of pq)

= pxor({ppt′σqδq | t′ ∈ T })q (By induction on every t′ ∈ T )

= pxor({pt′σqδ | t′ ∈ T })q (Definition of pq)

= pxor({pt′σq | t′ ∈ T })δq (Definition of δ and s standard)

= pptσqδq (Definition of pq)

¤

The main lemma, which shows that a substitution of a normal attack can be
build up from subterms of terms occurring in P , is proved next.

Lemma 19 Given a normal attack (π, σ), for all variables x and for all fac-
tors vx of σ(x), there exists t ∈ S(P ) such that t vσ vx.
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Proof. Assume that (*): For every t, t vσ vx implies t 6∈ S(P ). We will lead
this to a contradiction. Since A ⊆ S(P ), we have vx 6∈ A, and since vx is a
factor of σ(x), vx is standard. By Lemma 13 and (*), there exists j such that
vx ∈ S(pRjσq). Let Nx be minimal among the possible j. If vx ∈ S(pSiσq) for
some i, (*) implies that there exists y ∈ V(Si) with vx ∈ S(σ(y)). Then, by
Definition 3, (2) there exists Ri′ , i

′ ≤ i such that y ∈ V(Ri′). Thus, Lemma 13
and (*) imply that there exists j ≤ i with vx ∈ S(pRjσq). Note also that
vx 6∈ S(S0) since otherwise vx ∈ S(P ). Now, the minimality of Nx yields
i ≥ Nx. Summarizing, we have: vx is not a subterm of E0 = pS0σ, . . . , SNx−1σq,
and vx is a subterm of pRNx

σq. Thus, by Lemma 16, vx ∈ forge(E0).

Let us define the replacement δ = [vx ← ε(vx)] where ε(vx) is defined as in
Definition 7. Since (π, σ) is an attack, for all j, we have:

pRjσq ∈ forge(pS0σ, . . . , Sj−1σq)

We distinguish two cases: Assume first j < Nx. Then, by minimality of Nx, vx

is neither a subterm of pRjσq nor a subterm of pS0σ, . . . , Sj−1σq. With pRjσq ∈
forge(pS0σ, . . . , Sj−1σq) it follows ppRjσqδq ∈ forge(ppS0σqδ, . . . , pSj−1σqδq). As-
sume now that j ≥ Nx. With t = pRjσq, s = vx, E = E0, and F =
pSNx

σ, . . . , Sj−1σq, Lemma 17 implies ppRjσqδq ∈ forge(ppS0σqδ, . . . pSj−1σqδq).
Thus, in both cases

ppRjσqδq ∈ forge(ppS0σqδ, . . . pSj−1σqδq).

Now, with E = {S0, . . . , Sj−1} and E = {Rj}, respectively, (*) and Lemma 18
imply for all j: pRjσ

′q ∈ forge(pS0σ
′, . . . , Sj−1σ

′q), where σ′ = σδ. Hence, (π, σ′)
is an attack. But since σ′ is obtained from σ by replacing vx by a strictly smaller
message, namely ε(vx), we obtain |σ′| < |σ|, a contradiction to the assumption
that (π, σ) is a normal attack. ¤

We can now use this lemma to bound the size of every σ(x):

Theorem 20 For every protocol P , if (π, σ) is a normal attack on P , then
|{σ(x) |x ∈ V}| ≤ 3 · |P |, where |P | is the size of P as defined in Section 3.2.

Proof. Let F = {s | ∃x ∈ V , s ∈ F(σ(x))} For every s in the set F we
introduce a new variable xs and we define a substitution σ′ such that σ′(xs) =
s (and other variables are mapped to themselves). Let V ′ = {xs}s∈F . The
cardinality Card(V ′) of V ′ can be bounded as follows:

Claim. Card(V ′) ≤ |P |

Proof of the claim. We define a function f : V ′ → S(P ) as follows. Due to
Lemma 19, for every y ∈ V ′, there exists ty ∈ S(P ) such that ty 6∈ V and
ptyσq = σ′(y). We define f(y) = ty. The function f is injective since ts = ts′
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implies ptsσq = pts′σq. Thus, Card(V ′) ≤ |S(P )| = |P |, which concludes the
proof of the claim.

Let S = F ∪ {σ(x) |x ∈ V}. For all x ∈ V let σ′′(x) = pxor(xs1
, . . . , xsm

)q

with {s1, . . . , sm} = F(σ(x)). Note that, since the s’s are normalized standard
messages, σ(x) = σ′(σ′′(x)).

pptσ′′qσ′q = ptσq for all t

Hence ptσ′′q is a σ′-match of ptσq. However ptσ′′qσ′ is not necessarily normalized
which might be problematic for the sequel. Hence let us build another term
ptσ′′q

σ′

from ptσ′′q, such that ptσ′′q
σ′

σ′ = ptσq. Intuitively, it amounts to elim-
inate all subterms that “would get deleted” in ptσ′′q by normalizing ptσ′′qσ′.
Let us define :

xor(v1, ..., vn)σ′

=











xor(v1, ..., vn\vi\vj)
σ′

if pviσ
′q = pvjσ

′q and i 6= j

xor(vσ′

1 , ..., vσ′

n ) otherwise.

〈a, b〉σ
′

= 〈aσ′

, bσ′

〉 and similarly for {a}pb and {a}sb.

aσ′

= a if a ∈ V ar ∪ V ar′ ∪ Atoms.

where xor(v1, ..., vn\vi\vj) represents the XOR of all vi for i ∈ {1, .., n}\{i, j}.

We can check that pptσ′′q
σ′

σ′q = ptσq for all t, since by the above transfor-
mation we have pxor(v1, ..., vn)σ′

σ′q = pxor(v1, ..., vn)σ′q. Moreover for all

xor(u1, ..., uk) subterm of ptσ′′q
σ′

, we have uiσ
′ standard (since ptσ′′q is nor-

malized and σ′(xs) is standard, for all s ∈ F ), and it follows 2 that puiσ
′q 6= 0,

and puiσ
′q 6= pujσ

′q for all i 6= j, by definition of ptσ′′q
σ′

. By consequence

ptσ′′q
σ′

σ′ is normalized and then :

ptσ′′q
σ′

σ′ = ptσq for all terms t.

We are now going to bound |S|. Given a set of normalized messages Z, let

VZ = {x ∈ V |σ(x) non-standard and σ(x) /∈ Z},

PZ = {ptσ′′q
σ′

| t ∈ S(P ) and ptσq /∈ Z}.

We note that Z ⊆ Z ′ implies VZ′ ⊆ VZ and PZ′ ⊆ PZ , and that VS = ∅.

Claim. |S ∪ PS| ≤ |V∅ ∪ P∅|.

2 Remark that σ′(x) 6= 0 for all x
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Proof of the claim. We construct a sequence of sets S = Z1 ⊃ Z2 ⊃ · · · ⊃ Zn =
∅ with Zi+1 = Zi \ vi where vi ∈ Zi is a maximal message in Zi (w.r.t. the
subterm ordering). Note that n−1 is the cardinality of S and for every t ∈ Zi+1,
vi /∈ F(t). For every i ∈ {1, . . . , n} we prove

|Zi ∪ VZi
∪ PZi

| ≤ |Zi+1 ∪ VZi+1
∪ PZi+1

|

which concludes the proof of the claim. At step i, either of two cases may arise
when removing v = vi ∈ Zi from Zi:

• There exists x ∈ V with v = σ(x) non-standard. Then,

|Zi ∪ VZi
∪ PZi

| ≤ |Zi \ v ∪ {x} ∪ F(σ(x)) ∪ VZi
∪ PZi

|

≤
∣

∣

∣Zi+1 ∪ VZi+1
∪ PZi+1

∣

∣

∣

since x /∈ Zi ∪ VZi
, x ∈ VZi+1

, and F(σ(x)) ⊆ Zi \ v = Zi+1.

• v∈F and there exists t∈S(P ) such that t vσ v. Let t′ = ptσ“q
σ′

. We have
t′σ′ = ptσq = v. Then,

|Zi ∪ VZi
∪ PZi

| ≤
∣

∣

∣Zi+1 ∪ VZi+1
∪ {t′} ∪ PZi

∣

∣

∣

≤
∣

∣

∣Zi+1 ∪ VZi+1
∪ PZi+1

∣

∣

∣

since σ′(y)∈ Zi\ v = Zi+1 for every y ∈ V(t′) and PZi+1
= PZi

∪ {t′}.

This proves the claim. Using the claim and

|P∅| =
∣

∣

∣

pS(P )V ′q
∣

∣

∣ ≤ |S(P )V ′| ≤ |S(P )|+ |V ′|

we obtain

|{σ(x) |x ∈ V}| ≤ |S| ≤ |S ∪ PS| ≤ |V∅ ∪ P∅|

≤ |V|+ |S(P )|+ |V ′| ≤ 3 · |P |

¤

From this theorem completeness of the procedure depicted in Figure 2 follows
immediately.

7 Extending the Dolev-Yao Intruder by Different Oracle Rules

We extend the ability of the standard Dolev-Yao intruder beyond the perfect
encryption hypothesis by considering two specific sets of oracle rules. The
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first set are the XOR rules which allow the intruder to make use of the XOR
operator. We then consider, what we call, prefix rules which allow the intruder
to exploit certain properties of encryption based on block ciphers.

7.1 XOR Rules

The XOR rules allow the intruder to sum several messages with the XOR
operator. The result of this sum is being normalized.

Definition 21 We define Lo = Loc ∪ Lod to be the set of XOR rules where

• Loc is the set of rules of the form {t1, . . . , tn} → pxor(t1, . . . , tn)q with
{t1, . . . , tn} a non-empty finite multiset of normalized messages such that
pxor(t1, . . . , tn)q is non-standard, and

• Lod is the set of rules of the form {t1, . . . , tn} → pxor(t1, . . . , tn)q with
{t1, . . . , tn} a non-empty finite multiset of normalized messages such that
pxor(t1, . . . , tn)q is standard.

We call the intruder using the rules Lo ∪ Lc ∪ Ld the XOR intruder.

Note that the rules in Lod are in fact decomposition guess rules since if
pxor(t1, . . . , tn)q is standard, it is a factor of some of the terms t1, . . . , tn.
Note that we use that t1, . . . , tn are normalized. Also, the rules in Loc are
composition guess rules since proper subterms of pxor(t1, . . . , tn)q are sub-
terms of factors of this term, and thus, subterms of t1, . . . , tn. Again, we use
that t1, . . . , tn are normalized.

We also note that the intruder is not more powerful if we allow him to derive
non-normalized messages. More precisely, assume that Le is the set of rules
of the form {t1, . . . , tn} → s with s =XOR xor(t1, . . . , tn) (not necessarily
normalized). Let forgee(E) denote the set of messages the intruder can derive
from E with the rules Le, Ld, and Lc. Then, it easily follows by induction on
the length of derivations:

Proposition 22 For every message term t and set of messages E (both not
necessarily normalized), t ∈ forgee(E) implies ptq ∈ forge(pEq).

Therefore, we can restrict the intruder to work only on normalized messages
and to produce only normalized messages.

7.1.1 Example

Before showing that the XOR rules are oracle rules, we illustrate that the
XOR intruder can perform the attack informally described in Section 2.
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We recall (see Section 3.2) that the protocol underlying the attack is formally
described as follows: The initial intruder knowledge is {0, I, ki, ki−1, ka, kb} =
S0. The protocol rules are

(a, 1) : 0 ⇒ {〈na, a〉}pki

(a, 2) : {〈xsecret,xor(na, I)〉}pka ⇒ {xsecret}
p

ki

(b, 1) : {〈xna, a〉}
p
kb ⇒ {〈secret,xor(xna, b)〉}

p
ka

We have I = {(a, 1), (a, 2), (b, 1)} and <I= {((a, 1), (a, 2))}.

When using a perfect encryption model, there is no attack on this instance
of the protocol since the intruder is not able to forge {secret,xor(na, I)}p

ka

without the oracle rules. On the other hand, when using these rules, (π, σ)
with the execution order π = {(a, 1) 7→ 0, (b, 1) 7→ 1, (a, 2) 7→ 2} and the
substitution σ with σ(xna) = xor(na, b, I) and σ(xsecret) = secret is an attack
on this protocol. In fact, it is easy to check that the three following statements
are true:

{〈xor(na, b, I), a〉}pkb ∈ forge(0, I, ki, ki−1, ka, kb, {〈na, a〉}pki)

{〈secret,xor(na, I)〉}pka ∈ forge(0, I, ki, ki−1, ka, kb, {〈na, a〉}pki,msg)

with msg = p{〈secret,xor(xor(na, b, I), b)〉}pka
q

secret ∈ forge(0, I, ki, ki−1, ka, kb, {〈na, a〉}pki,msg, {secret}pki)

with msg = p{〈secret,xor(xor(na, b, I), b)〉}pka
q

7.1.2 XOR rules are oracle rules.

We now show that the XOR rules form a set of oracle rules. We start to show
Definition 7, (1). To do so, we first prove a sufficient condition for a derivation
to be well-formed.

Lemma 23 Let D = E0 →L1
. . . En−1 →Ln

En be a derivation with goal g
such that:

(1) For every j with Ej−1 →Lj
Ej−1, t the jth step in D and Lj ∈ Ld(t), there

exists t′ ∈ Ej−1 such that t is a subterm of t′ and t′ ∈ E0 or there exists
i with i < j and Li ∈ Ld(t

′).
(2) For every i < n and t with Li ∈ Lc(t), there exists j with i < j such that

Lj is a t′-rule and t ∈ S(E0, t
′).

Then, D is a well-formed derivation with goal g.
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Proof. From (1) it immediately follows by induction on i ∈ {1, . . . , n} that
Li ∈ Ld(t) implies t ∈ S(E0) for every message t.

Using (2), we prove by induction on n−i that for all i ∈ {1, . . . , n}, Li ∈ Lc(t)
implies t ∈ S(E0, g). If n − i = 0, then t = g and therefore t ∈ S(E0, g). For
the induction step, (2) implies that there exists j > i such that Lj is a t′-rule
and t ∈ S(E0, t

′). If Lj ∈ Ld(t
′), then t′ ∈ S(E0) (see above). If Lj ∈ Lc(t

′),
then by induction t′ ∈ S(E0, g), and hence, t ∈ S(E0, g). ¤

Now, we can prove that XOR rules allow well-formed derivations.

Proposition 24 For every finite normalized set E of messages and normal-
ized message g, g ∈ forge(E) implies that there exists a well-formed derivation
from E with goal g.

Proof. Let E0 = E and D = E0 →L1
. . .→Ln

En be a derivation of goal g of
minimal length. We prove that D satisfies (1) and (2) in Lemma 23. We first
show:

Claim. If F →Lo(t) F, t→Lo(u) F, t, u, then F →Lo(u) F, u.

Proof of the claim. By definition of xor rules, u is a normalized xor sum of
elements in F, t and t is a normalized xor sum of elements in F . Thus, u is
an xor sum of elements in F . Thus, F →Lo(u) F, u. This concludes the proof
of the claim.

By the claim w.l.o.g. we may assume that in D the terms used on the left
hand-side of an XOR rules are not generated by XOR rules. Formally (*): For
every i with Li ∈ Lo(t) and Li = F → t, there does not exist j ∈ {1, . . . , n}
such that Lj ∈ Lo(t

′) for some t′ ∈ F .

Now, we prove (1) and (2) of Lemma 23:

(1) If Lj ∈ Ld(s)∩Ld(t), then Li /∈ Loc(s), for all i < j, since rules in Loc do
not create standard terms, and Li /∈ Lc(s), for all i < j, by the minimality
of D (otherwise Lj could be removed). Therefore, either s ∈ E or there
exists i < j with Li ∈ Ld(s).

If Lj ∈ Lod(t), then t is standard and, by (*) and the definition of Lod,
there exists a non-standard term t′ in Ej−1 with t subterm of t′ and such
that Loc(t

′) /∈ D. If t′ ∈ E, we are done. Otherwise, there exists j < i
such that Lj is a t′-rule. If Lj ∈ Ld(t

′), again, we are done. Otherwise,
Lj ∈ Loc(t

′), a contradiction to the choice of t′.
(2) If Li ∈ Lc(t) and i < n, then t is standard, and by minimality of D,

there exists j > i such that t belongs to the left-hand side of Lj. By
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definition of a derivation, Lj /∈ Ld(t). If Lj ∈ Lc(t
′), then t ∈ S(t′), and

if Lj ∈ Lo(t
′), then since t is standard, we have that t is a factor of t′,

and thus, t ∈ S(t′), or there exists t′′ ∈ Ej−1 non-standard with t ∈ S(t′′)
(t is used to simplify t′′) such that, by (*), t′′ was not generated by some
rule in Lo. Since t′′ is non-standard it cannot be generated by some rule
in Lc or Ld. Thus, t′′ ∈ E0.

If Li ∈ Loc(t) and i < n, then (*) implies that t = g or there exists
j > i such that Li ∈ Lc(t

′) and t ∈ S(t′).
¤

Proposition 25 The set Lo of XOR rules is a set of oracle rules.

Proof. We check each condition in Definition 7:

(1) The first point is a consequence of Proposition 24.
(2) No term created with Loc can be decomposed with Ld.
(3) For F → s ∈ Loc(s), every proper subterm of s is a subterm of F by the

definition of Loc.
(4) For every non-atomic message u define ε(u) = 0. Let u be a non-atomic

message, F be a set of messages with 0 ∈ F and t be a message such
that F \ u →Lc(u) F and F →Lo(t) F, t. Obviously, ε(u) ∈ forge(F ). Let
δ = [u← 0]. There are three cases:
(a) Either u = t. Then, tδ = 0 ∈ forge(Fδ).
(b) Or u 6= t and u is a pair or an encryption. Then, by the definition of

XOR rules one easily verifies

pFδq→Lo(tδ) pFδ, tδ.q

(c) Or u 6= t and u is non-standard. In particular, F \ u →Loc(u) F and
u = xor(t1, . . . , tn) with t1, . . . , tn ∈ F \u. Thus, F \u→Lo(t) (F \u), t
since if u is needed in the construction of t, then the terms t1, . . . , tn
can be used. Now, it easily follows that pFδq→Lo(tδ) pFδ, tδq.

¤

Also, we can show that XOR rules can be applied in polynomial time.

Proposition 26 Let Lo be the set of XOR rules. Then, the problem whether
E → t ∈ Lo(t), for a given finite normalized set E of messages and a nor-
malized message t, with set E, t represented as a DAG G, can be decided in
polynomial time with respect to |E, t|.

Proof. Let B be the set of factors of terms in E and S be the factors of t,
both can be represented as subsets of nodes of G. Obviously, B and S can
be obtained in polynomial time, and it can be decided in polynomial time
whether S ⊆ B. If S 6⊆ B, then t cannot be build from E using an XOR
rule. Otherwise, S ⊆ B. We can represent t by Factor(t) ⊆ B. And this set
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can be represented as a vector of length |B| with entries 0 and 1 where an
entry indicates whether a message in B belongs to Factor(t) or not. This
vector can be interpreted as an element of the vector space of dimension |B|
over the field with two elements. In the same way the terms in E can be
represented. Now, deciding E →Lo(t) E, t is equivalent to deciding whether
the vector representing t can be represented as a linear combination of the
vectors representing the messages in E. This can be done in polynomial time
by gaussian elimination. ¤

As an immediate consequence of Theorem 8 we obtain that Insecure with
XOR rules is in NP. NP-hardness can be obtained as in [27]. Altogether this
yields:

Theorem 27 Insecure w.r.t. the XOR intruder is an NP-complete problem.

Together with Proposition 26, Theorem 9 implies:

Theorem 28 For the XOR intruder, the problem DERIVE is in PTIME.

In [12], this problem is called ground reachability problem and is only shown
to be in NP.

7.2 Prefix Rules

As another instance of oracles rules, we consider what we call prefix rules.
These rules allow the intruder to exploit certain properties of block encryption
algorithms, based for example on cipher block chaining (CBC). Using Theo-
rem 8, again we can show that Insecure is NP-complete . The Section 7.2.1
provides an example that illustrates the intruder’s additional power.

Throughout this section, we assume that terms do not contain the xor oper-
ator and that the normalization function p·q is the identity function. It is easy
to verify that Theorem 8 also holds in this simplified setting.

7.2.1 Motivation

As an example, we use a variant of the Needham-Schroeder symmetric key
authentication protocol [24], which is given as follows:

1. A→ S : A,B,NA

2. S → A : {NA, B,KAB, {KAB, A}sKBS
}sKAS

3. A→ B : {KAB, A}sKBS
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4. B → A : {NB}
s
KAB

5. A→ B : {NB − 1}sKAB

6. B → A : {secret}KAB

This protocol is considered to be secure in [10]. However, a careful analysis of
this protocol reveals a flaw in case encryption is carried out by cipher-block-
chaining (CBC) and all atoms are of the size of a block [26]. The attack in [26]
exploits that if a message m is encrypted using the CBC mode, then it is easy
to obtain an encryption of the prefix of m under the same key even without
knowledge of the encryption key. In other words, the intruder can perform the
following intruder rule:

{〈M,M ′〉}K → {M}K .

In the example above, the intruder can forge {NA, B}sKAS
by applying such a

rule on the second message of the protocol, i.e.,

{〈〈〈NA, B〉, KAB〉, {KAB, A}sKBS
〉}sKAS

.

Then, the intruder can send this message to A in another session where B is
the initiator of the protocol. In this second session (denoted by ·′ below), the
key NA accepted by A is also known by the intruder, who can continue the
communication with A and derive the secret. More precisely, the attack looks
like this:

1. A→ S : A,B,NA

2. S → A : {NA, B,KAB, {KAB, A}sKBS
}sKAS

3’. I(B)→ A : {NA, B}sKAS

4’. A→ I(B) : {N ′
A}

s
NA

5’. I(B)→ A : {N ′
A}

s
NA

6’. A→ I(B) : {secret}sNA

7.2.2 Prefix Rules are Oracle Rules

Definition 29 We define Lo = Loc ∪ Lod to be the set of prefix rules where
Lod = ∅ and Loc consists of intruder rules of the form

{〈〈. . . 〈〈M,M1〉 ,M2〉 , . . .〉 ,Mn〉}
s

K →Loc
{M}sK

for any normalized messages K,M,M1, . . . ,Mn, (n ≥ 1). We call the intruder
using the rule Lo ∪ Lc ∪ Ld prefix intruder.
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We can prove that these prefix rules are oracle rules that can be checked in
polynomial time and then conclude that Insecure for an intruder equipped
with prefix rules is NP-complete by Theorem 8.

We first show that prefix rules allow well-formed derivations and then verify
the remaining oracle conditions.

Proposition 30 For all t ∈ forge(E), there exists a well-formed derivation
from E with goal t.

Proof. Let E0 = E and D = E0 →L1
. . . →Ln

En be a derivation of goal
g. Let D′ be a derivation obtained from D with the following transformation
system where the rules are applied with priority order decreasing from 1 to 4.

(1) If i < j with Lj ∈ Loc({M}
s
K) and Li ∈ Lc({

〈

.. 〈M,M ′
1〉 . . . ,M

′
p

〉

}sK),

replace Lj by a sequence of Ld rules decomposing
〈

.. 〈M,M ′
1〉 . . . ,M

′
p

〉

to M followed by Lc({M}
s
K). (Note that the number of Loc rules strictly

decreases.)
(2) If i < j with Li = {M ′′}sK → {M

′}sK ∈ Loc and Lj = {M ′}sK → {M}
s
K ∈

Loc, then replace Lj by the rule {M ′′}sK → {M}
s
K . Note that the latter

rule belongs to Loc. The number of Loc rules does not change but the size
of the Loc rule argument strictly increases. (This size is bounded by the
biggest term in the derivation.)

(3) If i < j with Li = {M ′}sK → {M}
s
K ∈ Loc and Lj ∈ Ld({M}

s
K), replace

Lj by Ld({M
′}sK) followed by a sequence of Ld rules decomposing M ′ to

M . (The Loc rules do not change but the number of rules Ld(t) such that
there exists L ∈ D with L ∈ Loc(t) strictly decreases since, due to (2),
there exists no Loc({M

′}sK) rule in D.)
(4) If there exists i < n such that Li is a t-rule but, for all j > i, Lj does

not use t, then remove Li. (This removes rules that produce messages not
used in the derivation.)

Clearly, this transformation system terminates: This can easily be shown by
defining a (well-founded) lexicographical ordering with the different compo-
nents defined according to the remarks provided along with the transforma-
tions. Then, it is easy to observe that with every application of a transforma-
tion rule, the order of a derivation decreases w.r.t. the lexicographical ordering.

It is also clear that the derivation D′ derived from D by exhaustively applying
the transformation rules and eliminating redundant rules is in fact a derivation
from E with goal g. We show that D′ = E ′

0 →L′

1
. . .→L′

m
E ′

m is well-formed.

For any rule L′
i ∈ Ld(s) in D′, s is neither obtained with Lc (L′

i would be
useless) nor with Loc due to transformation rule (3). Therefore, we have s ∈ E
or there exists L′

j ∈ Ld(s) with j < i in D′. Iterating this argument, it follows
that s is a subterm of E.

30



For Lc rules, we will reason by induction on m−i, i.e., the induction hypothesis
is that for any m ≤ j > i and any message t′ with L′

j ∈ Lc(t
′) the condition on

composition rules in well-formed derivation is satisfied. Now, assume that L′
i ∈

Lc(t). If m − i = 0, then t = g, and therefore, t ∈ S(E, g). For the induction
step, there exists a rule L′

j, j > i, in D′ using t, by the transformation rule (4).
If L′

i ∈ Lc(t), it follows from the definition of derivations that L′
j 6∈ Ld(t). If

L′
i ∈ Loc(t), we also obtain L′

j 6∈ Ld(t), by transformation rule (3). Thus, in any
case, L′

j 6∈ Ld(t). Using transformation rules (1) and (2), we can also conclude
that L′

j 6∈ Loc: While for the case that L′
i ∈ Lc(t), this follows immediately

by transformation (1), the case L′
i ∈ Loc(t) is covered by transformation (2).

Consequently, L′
j ∈ Lc(t

′), and t is a subterm of t′. By the induction hypothesis
and since j > i, we know that t′ ∈ S(g, E), and thus, t ∈ S(g, E). ¤

We can now prove that these rules are oracle rules:

Proposition 31 The set Lo of prefix rules is a set of oracle rules.

Proof. We check each point of the definition:

(1) If t ∈ forge(E), then there exists a well-formed derivation from E with
goal t, thanks to Proposition 30.

(2) If we have F →Loc({M}s
K

) F, {M}sK using {M ′}sK and F, {M}sK →Ld({M}s
K

)

F, {M}sK ,M , then as in transformation rule (3) in the proof of Proposi-
tion 30 one obtains a derivation from F with goal M without a rule in
Ld({M}K).

(3) For any relation F →Loc({M}s
K

) F, {M}sK the proper subterms of {M}sK
are the subterms of M and K, which are also subterms of F .

(4) Let u be any non-atomic term. We choose ε(〈a, b〉) = a and ε(u) = 0
otherwise. Let F be a set of terms, 0 ∈ F , and {M}sK a term such
that F \ {u} →L F, u, with L ∈ Lc(u), and F →L′ F, {M}sK , with
L′ ∈ Loc({M}

s
K). Let θ = [u← ε(u)]. We distinguish four cases:

(a) If u = {M}sK , then {M}sKθ = 0 ∈ forge(Fθ).
(b) Assume that L′ uses u = {〈..〈M,M ′

1〉 . . . ,M
′
p〉}

s
K . If L ∈ Lc(u), it

follows that M,K ∈ F \ u, and thus, {M}sKθ ∈ forge(Fθ). If L ∈
Loc(u), then {〈..〈M,M ′

1〉 . . . ,M
′
q〉}

s
K ∈ F \ u for some q > p and

messages M ′
p+1, . . . ,M

′
q. Thus, {M}sKθ ∈ forge(Fθ).

(c) If L′ uses {..〈M,M ′
1〉 . . . ,M

′
p}

s
K , 1 ≤ q ≤ p and 〈..〈M,M ′

1〉 . . . ,M
′
q〉 =

u, then {M}sKθ = {M}K ∈ forge({t}sK) ⊆ forge(Fθ) with t =
〈..〈M,M ′

1〉 . . .〉,M
′
q−1〉,M

′
q+1〉 . . . ,M

′
p〉.

(d) Otherwise, if L′ uses {t}sK , then {M}sKθ ∈ forge({t}sKθ).
¤

Obviously, E → t ∈ Lo can be decided in polynomial time in |E, t|. Also,
analogously to the proof in [27] one can show that Insecure is NP-hard.
Now, by Theorem 8, it follows:
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Theorem 32 Insecure w.r.t. the prefix intruder is an NP-complete problem.

With Theorem 9 we obtain:

Theorem 33 For the prefix intruder, the problem DERIVE is in PTIME.

8 Conclusion

Based on a general framework in which we equip the intruder with oracle rules,
we have shown that when extending the standard Dolev-Yao intruder by i)
rules for XORing messages or ii) rules which allow the intruder to make use
of prefix properties of encryption algorithms the protocol insecurity problem
for a finite number of sessions remains NP-complete. This is the first tight
complexity bound given for the insecurity problem without the perfect en-
cryption assumption. Here we have only considered insecurity as failure of
secrecy. However, we believe that our result holds also for other properties
that can be reduced to reachability problems in our model, such as authentifi-
cation. Future work includes applying our approach to other kinds of intruder
rules and algebraic laws such as those for RSA encryption and Diffie-Hellman
exponentiation. First results have appeared in [7,8] is an important step in
this direction. We have shown that security is decidable for a large class of
protocols based on Diffie-Hellman key construction techniques, by reducing
the problem to solving linear diophantine equations.
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[6] Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani. An NP Decision
Procedure for Protocol Insecurity with XOR. In Proceedings of the Eighteenth
Annual IEEE Symposium on Logic in Computer Science (LICS 2003), pages
261–270. IEEE, Computer Society Press, 2003.

[7] Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani. Deciding the
Security of Protocols with Diffie-Hellman Exponentiation and Products in
Exponents. In P.K. Pandya and J. Radhakrishnan, editors, FSTTCS 2003:
Foundations of Software Technology and Theoretical Computer Science, volume
2914 of Lecture Notes in Computer Science, pages 124–135. Springer, 2003.
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