
Computationally Secure
Two-Round Authenticated Message Exchange∗

Klaas Ole Kürtz, Henning Schnoor, and Thomas Wilke
Christian-Albrechts-Universität zu Kiel

Christian-Albrechts-Platz 4, 24118 Kiel, Germany
{kuertz, schnoor, wilke}@ti.informatik.uni-kiel.de

ABSTRACT
We prove secure a concrete and practical two-round authen-
ticated message exchange protocol which reflects the authen-
tication mechanisms for web services discussed in various
standardization documents. The protocol consists of a single
client request and a subsequent server response and works
under the realistic assumptions that the responding server
is long-lived, has bounded memory, and may be reset occa-
sionally. The protocol is generic in the sense that it can be
used to implement securely any service based on authenti-
cated message exchange, because request and response can
carry arbitrary payloads. Our security analysis is a compu-
tational analysis in the Bellare-Rogaway style and thus pro-
vides strong guarantees; it is novel from a technical point
of view since we extend the Bellare-Rogaway framework by
timestamps and payloads with signed parts.

Categories and Subject Descriptors
C.2.2 [Computer Systems Organization]: Network Pro-
tocols—Protocol verification

Keywords
cryptographic protocols, authenticated message exchange,
timestamps

1. INTRODUCTION
A characteristic feature of web services (see, e. g., [25, 23])

and other services provided in the Internet (such as remote
procedure call [30, 32]) is their restricted form of communi-
cation. Unlike in other cryptographic settings, these proto-
cols have only two rounds: In the first round, a client sends
a single message (request) to a server; in the second round,
the server replies with a single message (response) contain-
ing the result of processing the request. A central security

∗This work was partially supported by the DFG under grant
KU 1434/4-2.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS’10 April 13–16, 2010, Beijing, China.
Copyright 2010 ACM 978-1-60558-936-7 ...$10.00.

goal arising is that of authenticated message exchange: The
server wants to be convinced that the request is new and
originated from the alleged client, while the client wants to
be convinced that the response originated from the intended
server and is a response to his request.

Protocols which are as described above are called two-
round authenticated message exchange protocol (2AMEX
protocol) in this paper. The underlying authentication is-
sues and mechanisms for dealing with them are discussed in
various papers, see, for instance, [9, 8], and also dealt with
in practice, see, for instance, [27]. However, no concrete
2AMEX protocol has been formally specified, let alone rig-
orously analyzed with respect to its security prior to our
work. Our work is an attempt at improving the situation.
We

1. specify a concrete and practical 2AMEX protocol,
called 2AMEX-1, reflecting what has been discussed in the
various standardization documents, see [27, 26],

2. adapt and extend the Bellare-Rogaway framework for
analyzing cryptographic protocols to the 2AMEX setting
(adjust it to two rounds, incorporate timestamps and pay-
loads with signed parts), and

3. prove the specified protocol secure.
Our work therefore provides a firm theoretical underpinning
for realistic and secure implementations of services which
require authentication.

A simple 2AMEX protocol works as follows: The client ap-
pends a message id (e. g., random nonce or sequence number)
to his actual request, signs the result, and sends the signed
message to the server. The server verifies the signature on
the received message and checks that it has not seen the
message id previously. It takes the result of processing the
request, appends the message id he received from the client,
signs the message obtained, and sends the signed message to
the client. Finally, the client verifies the signature and the
message id.— The problem here is that the server needs to
keep track of all message id’s it has seen, because otherwise
it is easy to mount replay attacks. A natural and widely
considered reasonable approach to solve this problem is to
augment messages by timestamps and use them to filter out
replays [15]. 2AMEX-1 follows this approach.

The requirement of authenticated message exchange
shows up in very different contexts, while the mechanisms
used for implementing it are more or less the same and in-
dependent of the respective context. This is reflected in
2AMEX-1: request and reply can both carry arbitrary pay-
loads. We even allow that a payload contains parts signed
with keys which are used for securing entire requests and

responses, following what web service standards allow [27].
Clearly, the use of the keys is restricted for signing parts,
because otherwise security is compromised.

Our security analysis is based on the seminal work by Bel-
lare and Rogaway [7]. The model developed in this work is,
however, not general enough. We extend it in two directions:
first, we add timestamps, and, second, we add payloads and
signature oracles for dealing with signed parts. Our model
allows the adversary almost complete control over the local
clocks of the principals, the only requirement is that clocks
are monotone. In particular, we do not assume synchronized
clocks, or a bounded clock drift. A crucial point in our ex-
tension of the Bellare-Rogaway framework is that the latter
only considers authentication protocols with at least three
rounds and that this is in fact a fundamental requirement for
their definition of authenticity; our definition is a non-trivial
adaptation of theirs. Another difference is that we carry out
a concrete security analysis instead of an asymptotic one;
we obtain the latter as a consequence.
Related work. The Bellare-Rogaway framework is only one
option for studying computational security of cryptographic
protocols. Another widely recognized option are simulation-
based frameworks such as Canetti’s Universal Composition
model [11], Küster’s model using inexhaustible Turing ma-
chines [22] or Backes, Pfitzmann, and Waidner’s Crypto-
graphic Library [4]. These frameworks have the feature that
they provide a notion of composition which allows for mod-
ular security proofs. However, there does not seem to be a
way to “decompose” the long-lived server algorithm in our
protocol into simpler components such that the aforemen-
tioned frameworks would simplify a security proof. A more
detailed discussion can be found in [21], which is based on
the work presented here, as presented in the underlying tech-
nical report.

There is a wide range of papers on entity authentication
protocols (often in connection with key exchange). Bel-
lare and Rogaway’s paper [7] has a very brief section about
“authenticated exchange of text”, which discusses how in
a three-round entity authentication protocol authenticated
data can be transmitted. In that paper, the authors do
not, however, give a formal definition of authenticated ex-
change of text nor do they consider two-round protocols nor
is their setting general enough to support an arbitrary ser-
vice using this protocol. Entity authentication has also been
studied in the Universal Composition model [13] and in com-
bination with the cryptographic library [3]; a computational
analysis of the Needham-Schroeder-Lowe entity authentica-
tion protocol [28, 24] is given in [31]. A crucial difference
to our model is that in the mentioned papers, the respon-
der (server) is short-lived, whereas in our model a server
processes an unbounded number of requests from different
clients, which is reminiscent of optimistic contract-signing
protocols, see [2, 18], where the trusted third party poten-
tially needs to remember an unbounded number of requests.
In [12], long-lived principals are dealt with from a complex-
ity point of view, whereas in our work long-lived servers are
a modeling issue.

Timestamps, which are crucial to our work, have been
used in various cryptographic settings, for instance, in a key
exchange protocol proposed in [17]. In [16, 10] symbolic
models for protocols with timestamps are introduced and
techniques to analyze protocols within these models are de-
scribed. In [19] the timing model is similar to ours, however,

the paper is concerned with secure multi-party computation.
In our model, we allow the adversary to reset the server

at any time; in [6] resetting of principals is discussed in a
different context. As pointed out above, the payloads in
2AMEX protocols are determined by the adversary; in [29]
a framework is proposed that models adversarial input in a
general fashion.

Structure of the paper. We explain 2AMEX-1 informally
in Sect. 2, present our formal model for 2AMEX protocols in
Sect. 3, recast 2AMEX-1 in our formal framework in Sect. 4,
give correctness and security definitions in Sect. 5, present
our main result in Sect. 6, give sketches of the proofs in
Sections 7 and 8, and conclude in Sect. 9. Further details
are given in the appendix. A full version of this paper can
be found in [20].

We are grateful to the anonymous reviewers for their truly
helpful comments.

2. PROTOCOL DESCRIPTION
In this section, we describe our protocol 2AMEX-1 in-

formally. In 2AMEX-1, an authenticated message exchange
between a client with identity c and a server with identity s
works as follows.
1. a) c is asked by a user to send the request pc

b) c sends {(From : c,To : s,MsgID : r,Time : t,
Body : pc)}skc to s

c) s checks whether the message is admissible and if not,
stops

d) s forwards the request (r, pc) to the addressed service

2. a) s receives a response (r, ps) from the service
b) s checks whether the response is admissible and if not,

stops
c) s sends {(From : s,To : c,Ref : r,Body : ps)}sks to c
d) c checks whether the message is admissible and if not,

stops
e) c forwards the response ps to the user

Here, r is a randomly chosen message identifier which is also
used as a handle by the server (see steps 1. d) and 2. a)), t is
the local time of the client, pc is the payload the client sends,
ps is the payload the server returns, and {·}skc and {·}sks

stand for signing the message by the client and server, re-
spectively. Repeating the message id of the request allows
the client to verify that ps is indeed a response to the re-
quest pc.

The interesting parts are steps 1. c) and 2. b). We assume
that there is a constant caps > 0, the so-called capacity of
the server, and a constant tol+s that indicates its tolerance
with respect to inaccurate clocks. At all times the server
keeps a time tmin and a finite set L of triples (t, r, c) of
pending and handled requests. At the beginning or after a
reset, tmin is set to ts +tol+s , where ts denotes the local time
of the server, and L is set to the empty set.

Step 1. c) Upon receiving a message as above, s rejects if
(t′, r, c′) ∈ L for some t′ and c′ or if t /∈

[
tmin + 1, ts + tol+s

]
,

and otherwise proceeds as follows: If L contains less than
caps elements, it inserts (t, r, c) into L. If L contains at
least caps, the server deletes all tuples containing the oldest
timestamp from L, until L contains less than caps tuples.
Then it sets tmin to the timestamp contained in the last tuple
deleted from L, and finally inserts (t, r, c) into L.

Step 2. b) When asked to send a payload ps with message
handle r, the server rejects if there is no triple (t, r, c) ∈ L

E
n
v
ir
o
n
m
e
n
t

N
e
tw
o
rk

Client

μ

pc mc
mc

ms

ms
ps

ps

pc

μ

μ

μ

receive

send

Server

S
e
rv
ic
e

send

receive

1
2

3
4

Figure 1: Message flow in four steps.

with c 6= ε. If it does not reject, it updates L by overwriting
c with ε in the tuple (t, r, c) to ensure that the service cannot
respond to the same message twice.

3. PROTOCOL MODEL
The framework we are working in is an extension and

adaptation of the framework for entity authentication in-
troduced by Bellare and Rogaway in [7] to the message au-
thentication setting.

As mentioned earlier, in a bounded memory setting time
is necessary to achieve resistance against replay attacks. We
use ltime-bit numbers as time values for an arbitrary fixed
ltime ∈ N. We also assume there is an arbitrary fixed identi-
fier set IDs ⊆ {0, 1}lID for an arbitrary fixed lID ∈ N whose
elements are called identifiers. We use them to identify prin-
cipals, which can act both as clients and as servers.

3.1 Signature Schemes
Our message exchange protocols use signature schemes,

where a signature scheme S is a triple of algorithms S =
(G,S, V), satisfying the following conditions: (1) G is a key
generation algorithm, i. e., a probabilistic algorithm which
produces a pair (pk, sk), where pk is a public key and sk the
corresponding secret key; (2) S is a signing algorithm, i. e., a
probabilistic algorithm which for any bit string m ∈ {0, 1}∗
and any secret key sk produces a signature S(m, sk); and
(3) V is a deterministic verification algorithm which on input
((m,S(m, sk)), pk) returns true if (pk, sk) has been gener-
ated by G. By {m}sk, we denote the pair (m,S(m, sk)), i. e.,
the bit string m accompanied by a valid signature obtained
from the signature scheme. In the remainder of the paper,
we assume a fixed signature scheme.

3.2 Clients and Servers
Before defining clients and servers formally, we describe

how they are supposed to operate. An intended run of an
authenticated message exchange protocol between a client
c ∈ IDs and a server s ∈ IDs is initiated by the client-
side environment which wants to call some service on the
server. The protocol run consists of two rounds, request and
response, modeled by four steps as illustrated in Figure 1
(see our protocol description in Section 2):
client send The client is given a request payload pc by the

environment which is a request to the service provided

by the server s. The client encapsulates the payload,
adding security data etc., and sends the resulting mes-
sage mc over the network.

server receive The server receives the message mc from
the network, accepts the message and unwraps it, giv-
ing the payload pc, a handle h, and the identified
sender of the incoming message c to the service.

server send The server is provided with a response pay-
load ps and the handle h by the service (which chose
ps as a response to the request payload pc). The server
encapsulates the payload and sends a message, ms,
over the network.

client receive Finally, the client receives the message ms

from the network and returns ps to the environment.
To give the strongest security guarantees possible, the

roles of the environment, the service, and the network are all
played by the adversary in our security model. As the ad-
versary is free to choose any payload, our protocols support
any service.

This leads to the following formal definitions. Client and
server algorithms are probabilistic algorithm with input pa-
rameters and output values as specified in Table 1, and
explained in what follows.

The input for the client algorithm consists of (i) an in-
struction which can either be send or receive, (ii) identifiers
c ∈ IDs, s ∈ IDs of the client that the algorithm runs for and
the server it is supposed to communicate with, (iii) the fam-
ily of public keys1 pkIDs = {pka}a∈IDs and its own private
key skc, (iv) the local time t ∈ {0, 1}ltime , (v) the payload
p ∈ {0, 1}∗ to send or the message m ∈ {0, 1}∗ obtained
from the network, and (vi) local state information µ (local
memory of the principal).

The server receives almost the same arguments, the dif-
ferences being there is no partner identifier (a server com-
municates with several clients), but a message handle, and
there is an additional reset instruction with empty incoming
message and local state.

The server algorithm returns the following values when
called with a message mc: The extracted payload p ∈
{0, 1}∗, the decision δ which is A (accept) if the command
succeeded (which in the case of a receive command includes

1Strictly speaking, the algorithms do not get the whole set
of keys as input, instead they have access to an appropriate
oracle.

input parameters client Γ server Σ
instruction α ∈ {send, receive} α ∈ {send, receive, reset}
identity c ∈ IDs s ∈ IDs
partner’s identity s ∈ IDs
public keys pkIDs pkIDs

private key skc sks

local time t ∈ {0, 1}ltime t ∈ {0, 1}ltime

payload or message p or m ∈ {0, 1}∗ p or m ∈ {0, 1}∗
message handle h ∈ {0, 1}∗
local state µ µ

output values client Γ server Σ
message or payload m or p ∈ {0, 1}∗ m or p ∈ {0, 1}∗
decision δ ∈ {A,R} δ ∈ {A,R}
assumed partner c ∈ IDs ∪ {ε}
message handle h ∈ {0, 1}∗
local state µ′ µ′

Table 1: Input parameters and output values of the algorithms Γ and Σ.

successful authentication) or R (reject) if authentication was
unsuccessful or an error occurred. The algorithm further re-
turns the identity c it assumes to be communicating with in
the current round (the dummy value ε is used for a rejected
message), a message handle which later enables the service
to respond to the message, and the updated local state (local
memory) µ.

Clients have the same output syntax except that there is
no need to output a message handle or the assumed partner,
because the latter is contained in the input parameters of the
algorithm.

Execution Orders. Note that it only makes sense to call
the algorithms with instructions in a natural order, and that
we have to assume that the algorithms do in fact accept mes-
sages, i. e., (i) a server should accept a send command after
accepting an incoming request with a receive command (if
there was no reset between these commands), (ii) a client
instance accepts at most one send and one receive command
(where send has to predate receive), etc. Therefore, we re-
quire that the client algorithm rejects if instructions arrive
out of order, and that the server accepts at least in case (i).

3.3 2AMEX Protocols, Adversary, and the
Experiment

We now give the formal definition of a Two-Round Au-
thenticated Message Exchange (2AMEX) protocol. Such a
protocol is a tuple Π = (Γ,Σ, τ, ϕ,E∗) where Γ and Σ are
the client and server algorithms, τ and ϕ are the time and
freshness functions (see below), and E∗ is an exception set
as defined below.

A time function is a function that assigns to each client
message mc a time value τ(mc). The intended interpreta-
tion is that τ(mc) is the time at which mc was supposedly
created. The time function will be used to phrase the cor-
rectness condition (see Section 5).

A freshness function is a function which, for an identity
s, state information µs, and a time ts, specifies a freshness
interval ϕ(s, µs, ts), see Section 4 for an example. This is
the interval of time values the server s considers fresh, i. e.,
for the server to consider a message fresh the time value of
that message has to be in the server’s freshness interval.

An exception set is a set of bit strings called exceptions

which is recognizable in polynomial time. This is the set of
bit strings which the signature oracle (see below) will refuse
to sign for the adversary.

We next describe how all these components work together.
This is done, as usual, by defining an appropriate notion of
experiment, in which the protocol is running with an adver-
sary. The latter is simply an arbitrary probabilistic algo-
rithm.

We assume that as a first step the adversary specifies a
set of identities A ⊆ IDs, which has to include both the
identities of oracles the adversary calls and the identities
that will occur in messages. For every principal s ∈ IDs
a server instance Σs runs under the identity s. For every
pair of principals c, s ∈ IDs arbitrarily many client instances
Γi

c,s can run where c acts as a client and s as a server, and
where i is a natural number. We let the adversary control
all these instances, that is, the adversary can decide when to
call such an instance, which payloads to choose, which local
times are used, etc. To set the local clock of a principal, the
adversary can use a time instruction with the only restriction
that the value of the local clock cannot be decreased by the
adversary, i. e., each principal’s clock is monotone.

There is a signature oracle S, which can be used by the
adversary (i) to sign bit strings while he constructs the pay-
load for a send instruction, and (ii) to corrupt a principal’s
key. The corresponding instructions are sign and corrupt.
Clearly, we cannot allow the adversary to use the signature
oracle to sign every bit string. Therefore, the signature ora-
cle refuses to sign bit strings belonging to the exception set
specified in the protocol description.

The experiment works in steps, where in each step the
adversary can perform an action (send, receive, reset, sign,
corrupt, time), for which he provides the parameters under
his control and receives the output values. The details of
the experiment are given in Table 2.

In the experiment traces are recorded for each instance,
which allow us to define correctness and security of a pro-
tocol, see the next section. A trace is a sequence of tuples
containing a step number and the observable action of the
instance in the corresponding step, i. e., the local time t, the
payloads and messages received or sent by the instance in
this step, as well as the decision of the instance (accept or

reject), and finally, for servers entries denoting the identity
of the client that the server believes it is communicating
with and the message handle.

The experiment ExpΠ,A for an adversary A against a pro-
tocol Π as above proceeds as described in Table 2, where
we use v R←−A to describe assigning the output of the (ran-
domized) algorithm A to the variable v.

4. FORMAL DEFINITION OF 2AMEX-1
In this section, we recast our protocol 2AMEX-1 within

the formal framework developed in the previous section, and
comment on various aspects of it.

1. Generate keys.
Let the adversary specify a set A ⊆ IDs, and for each a ∈ A:
(a) Let (pka, ska) R←−G().
(b) Send (a, pka) to the adversary.

2. Initialize clocks.
For each a ∈ IDs, let ta ←− 0.

3. Initialize states and traces of the clients.
For each i ∈ N and c, s ∈ IDs, let tri

c,s ←− ε and µi
c,s ←− ε.

4. Initialize states and traces of the servers.
For each s ∈ IDs, let trs ←− ε and µs ←− ε.

5. Initialize step counter.
Let n←− 0.

6. Run the adversary step by step.
Run the adversary, and in each step first increase the
counter n and then call client, server or signature algorithm
as follows according to the adversary’s selection:
– Γi

c,s : send(p)

(i) (m, δ, µ) R←−Γ(send, c, s, pkIDs, skc, tc, p, µi
c,s),

(ii) µi
c,s ←− µ,

(iii) tri
c,s ←− tri

c,s · (n, send, tc, p,m, δ),

(iv) return (m, δ, µ) to the adversary.
– Σs : receive(m)

(i) (p, δ, c, h, µ) R←−Σ(receive, s, pkIDs, sks, ts,m, ε, µs),
(ii) µs ←− µ,
(iii) trs ←− trs · (n, receive, ts, p,m, δ, c, h),
(iv) return (p, δ, c, h, µ) to the adversary.

– Σs : send(p, h)
(i) (m, δ, c, h′, µ) R←−Σ(send, s, pkIDs, sks, ts, p, h, µs),
(ii) µs ←− µ,
(iii) trs ←− trs · (n, send, ts, p,m, δ, c, h),
(iv) return (m, δ, c, h′, µ) to the adversary.

– Γi
c,s : receive(m)

(i) (p, δ, µ) R←−Γ(receive, c, s, pkIDs, skc, tc,m, µi
c,s),

(ii) µi
c,s ←− µ,

(iii) tri
c,s ←− tri

c,s · (n, receive, tc, p,m, δ),
(iv) return (p, δ, µ) to the adversary.

– Σs : reset()
(i) (m, δ, c, h, µ) R←−Σ(reset, s, pkIDs, sks, ts, ε, ε, ε),
(ii) µs ←− µ,
(iii) trs ←− trs · (n, reset, ts, ε, ε,A, ε, ε),
(iv) return (m, δ, c, h, µ) to the adversary.

– S : corrupt (a)
(i) trs ←− trs · (n, corrupt, ts, ε, ε,A, ε, ε),
(ii) return ska to the adversary.

– S : sign(a, p)
(i) If p /∈ E∗, return {p}ska , otherwise return ε to the

adversary.
– time(a, t)

(i) ta ←− max(ta, t),
(ii) return ta to the adversary.

Table 2: The experiment ExpΠ,A for an adversary A
against a protocol Π = (Γ,Σ, τ, ϕ,E∗).

4.1 Formal Description
Recall the informal description from Sect. 2 and the formal

description of 2AMEX protocols from Sect. 3. So what we
have to specify is the server algorithm as well as the client
algorithm, the time function as well as the freshness func-
tion, and the exceptions set. We also choose some lnc ∈ N
as the length of the message id’s used in the protocol.

Server Algorithm, Freshness Function, and Time Func-
tion. Let s be the identity that the server algorithm Σ is
called with. As local state µ, the server uses a tuple (tmin, L)
consisting of a variable tmin holding a single timestamp and
a set L of triples of the form (t, r, c) where t is a timestamp,
r is a message id, and c is an identity.

The freshness function is defined by ϕ(s, (tmin, L), t) =[
tmin + 1, t+ tol+s

]
.

The server first checks if it is called with local state ε and
if so (i. e. initially and after each reset), sets tmin to ts +tol+s
where ts is the current local time of the server, and sets L
to the empty set. Then the server proceeds according to the
instruction.

Upon receiving mc = {(From : c,To : s′,MsgID : r,Time : t,
Body : pc)}skc , at local server time ts with local state µ =
(tmin, L), the server s performs the following:

1. If one of the following conditions is met, stop and re-
turn (ε,R, ε, ε, µ):
(a) s′ 6= s,
(b) V (mc, pkc) returns false,
(c) t /∈ ϕ(s, µ, ts),
(d) (t′, r, c′) ∈ L for some t′, c′.

2. While |L| ≥ caps,
(a) tmin ←− min{t′ | (t′, r′, c′) ∈ L},
(b) L←− {(t′, r′, c′) ∈ L | t′ > tmin}.

3. L←− L ∪ {(t, r, c)}.
4. Return (pc,A, c, r, (tmin, L)).

Observe that this corresponds to steps 1. c) and 1. d) of the
informal description in Sect. 2.

The following corresponds to steps 2. a)–c) of the informal
description in Sect. 2. When asked to send a payload ps with
message handle r and state information µ = (tmin, L), the
server algorithm proceeds as follows:

1. Look for (t, r, c) ∈ L with c 6= ε. If no matching triple
is found in the list, return (ε,R, ε, ε, µ).

2. ms ←− {(From : s,To : c,Ref : r,Body : ps)}sks .
3. L←− (L \ {(t, r, c)}) ∪ {(t, r, ε)}.
4. Return (ms,A, c, ε, (tmin, L)).

The time function is defined by τ(mc) = t where mc is as
above.

Client Algorithm. Let c be the client identity that Γ
is called with. If the instruction is to send a payload pc

to server s at time t and the local state µ is ε, the algo-
rithm randomly chooses the message id r R←−{0, 1}lnc , sets
mc = {(From : c,To : s,MsgID : r,Time : t,Body : pc)}skc and
returns (mc,A, r). If requested to send when µ 6= ε, it re-
turns (ε,R, µ). Note that this corresponds to steps 1. a) and
1. b) of the informal description in Sect. 2.

The following steps corresponds to steps 2. c)–e) of the
informal description in Sect. 2. If the algorithm is in-
structed to receive a message ms = {(From : s′,To : c′,
Ref : r′,Body : p′s)}sks′ when the local state is µ, it proceeds
as follows:

1. If one of the following conditions is met, stop and re-
turn (ε,R, µ):
(a) |µ| 6= lnc,

(b) s′ 6= s,
(c) c′ 6= c,
(d) V (ms, pks) returns false,
(e) r′ 6= µ.

2. Return (ps,A, 0
1+lnc).

Bit String Representations and Exceptions. Our descrip-
tion above leaves open the actual format of the messages.
We assume that the tags From, Time, . . . and tuples which
form the messages are represented as bit strings in such a
way that the individual components can be retrieved with-
out ambiguity.

The set E∗ ⊆ {0, 1}∗ is the set of all bit string represen-
tations of messages of the form (From : c,To : s,MsgID : r,
Time : t,Body : pc) or (From : s,To : c,Ref : r,Body : ps). We
assume the bit string representation is such that E∗ is
recognizable in polynomial time. For example, by using
SOAP [25] one can meet these requirements.

This completes the formal definition of our protocol. Note
that it can easily be seen that the restrictions on execution
orders from Sect. 3.2 hold. Also, it is easy to see that our
protocol indeed achieves to work with bounded memory:

Remark 1. The size of the state of a server s is bounded
by the size of the bit string representation of (tmin, L), where
tmin ∈ {0, 1}ltime is a timestamp and L is a list of caps many
tuples of the form (t, r, c) with t ∈ {0, 1}ltime , r ∈ {0, 1}lnc

and c ∈ {0, 1}lID .

4.2 Comments and Caveats
For a fixed protocol run, we use ta(n) to denote the value

of the local clock of principal a at step n, and µa(n) to denote
the local state of the server instance of a before step n.

Resets. From the specification of 2AMEX-1, it is imme-
diate that after a reset there is a delay in accepted mes-
sages: If a reset of a server s happens at a step nr, then
the next accepted message must have a timestamp exceeding
ts(nr)+tol+s . However, such a delay is natural, since for any
protocol that resists replay attacks, if a reset happens at step
nr, and n1 < nr < n2, then the intervals ϕ(s, µs(n1), ts(n1))
and ϕ(s, µs(n2), ts(n2)) must be disjoint. Due to asyn-
chronous clocks, we need the interval ϕ(s, µs(n), ts(n)) to
exceed the time ts(n), therefore rejecting valid messages can-
not be completely avoided.

Parameterization. Our protocol is parameterized, since
lnc, tol+s , and caps can be chosen freely. We will see that
for any choice of tol+s and caps the protocol is correct and
secure—however, our correctness definition relies on “rea-
sonable” values for the intervals ϕ. A message m sent by
a client c in step n1 and received by a server s in step n2

is rejected if tc(n1) = τ(m) /∈ ϕ(s, µs(n2), ts(n2)). By con-
struction of the protocol, there are two ways in which this
can happen: (i) tc(n1) > ts(n2) + tol+s , or (ii) tc(n1) ≤ t′min

where t′min is s’s internal variable tmin before step n2.
The first of these issues can occur when the clocks of client

and server are asynchronous, which in realistic environments
is very likely. To circumvent this problem, one should choose
the constant tol+s large enough to deal with usually occurring
time differences between the local clocks of the principals.

The second case occurs after a reset or if, in step n2, the
server s has accepted more messages with timestamps in
the future of tc(n1) than the maximal number of message
id entries it can maintain in the set L. This can happen,
for instance, due to network properties that slow down the
delivery of messages. Obviously, increasing caps makes this

case occur less frequently, in particular, if the servers would
have unbounded memory, it would not occur at all.

Responding to old Messages. A protocol is only required
to allow the service to respond to the most recently received
and accepted message (see Execution Orders in Sect. 3.2).
But a good protocol should allow the service to respond to
more, i. e. older messages, while still accepting incoming
messages. In our protocol, we can give the following guar-
antee on how long the service will be able to respond to a
message:

Let t be a timestamp and let µ = (tmin, L) be the local
state of a server s. Assume that L already contains n1 tuples
whose timestamps are older than t, and let n2 = caps − |L|.
Now if a message m is received and accepted with τ(m) >
tmin, the service will be able to respond to m using its mes-
sage handle as long as the server, after accepting m, does
not accept more than n1 + n2 messages with a timestamp
greater than or equal to τ(m).

Dishonest Timestamps. In a way, the protocol 2AMEX-1
gives the clients incentive to “lie” in their timestamps, since
for the clients, it is advantageous to claim a timestamp in
the future, as long as the timestamp does not exceed the sum
of the server clock plus its tolerance. Assume, for example,
that the server tolerance tol+s is very large, let’s say 24 hours.
Then a client has an advantage if it adds 24 hours to the
timestamp of each message that it sends to the server s,
since its messages will most likely not be rejected due to old
timestamps. This has an unwanted effect on the operation
of the server: If this client (or a group of clients acting in
the same way) sends many requests to the server, and if the
server does not have enough memory, the value tmin of s will
soon be in the future as well, which leads to the rejection
of valid incoming messages. The consequence of this line of
thought is that in practice, it is desirable that the “center”
of the intervals ϕ should always be the present time, so that
the most successful strategy for the clients is to use truthful
timestamps. In [20], we explain how this can be achieved.

5. CORRECTNESS AND SECURITY DEFI-
NITIONS

We now define what it means that a protocol is correct and
secure in our model. For a fixed execution of the experiment,
an identifier s and a natural number n, we use µs(n) to
denote the content of the local state µs before the nth step.
We say that for a principal a ∈ IDs the principal’s key is
corrupted in the experiment at step n, if there is a step
number n′ ≤ n such that in step n′, the adversary performed
a S : corrupt (a) query.

From now on, with tri
c,s and trs, we refer to the corre-

sponding traces after running the experiment.

5.1 Correctness Definition
Informally, our notion of correctness requires that if mes-

sages are delivered as intended by the network (i. e., the
adversary), then all parties accept (given that the messages
are considered fresh by the servers), the sender of each mes-
sage is correctly determined, and the payloads are delivered
correctly. Formally, we say that an adversary A is benign
if it only delivers messages that were obtained from a client
or server instance, and delivers a message at most once to
every instance. This models a situation in which arbitrary
payload is sent over a network in which messages may get

lost, all messages can be read by anybody, and servers can
loose local state information, but no message is altered, no
false messages are introduced, and no replay attacks are at-
tempted.

Definition 1. A 2AMEX protocol Π is (n, ε)-correct if for
any benign adversary A that starts at most n many client
sessions, and any c, s ∈ IDs the following conditions are met:

1. If (n1, send, t1, pc,mc,A) ∈ tri
c,s, (n2, receive, t2, p

′
c,mc,

δs, c
′, h) ∈ trs, and τ(mc) ∈ ϕ(s, µs(n2), t2), then c′ =

c, pc = p′c, and δs = A, with probability at least 1− ε.
2. If, additionally, (n3, send, t3, ps,ms,A, c

′, h) ∈ trs and
(n4, receive, t4, p

′
s,ms, δc) ∈ tri

c,s with n2 < n3 and
n1 < n4, but with no (n′, . . . ,A, . . .) ∈ trs such that
n2 < n′ < n3, then ps = p′s and δc = A.

Note that this definition leaves a loop hole for “correct”,
but utterly useless protocols: The freshness function ϕ is
part of the specification, and a protocol only has to be cor-
rect with regard to this choice of ϕ. Hence a protocol in
which ϕ always returns the empty interval is not required to
accept any messages. For protocols to be useful in practice,
it is desirable to have a large freshness interval, see [20] for
a discussion.

Similarly, this definition only guarantees that the service
can respond to the last message that the server received and
accepted. Using message handles, a good protocol should
allow the service to respond to any of the recently received
messages.

The reason why we only require the server to accept with
high probability is that we allow randomness in our algo-
rithms, and therefore collisions cannot be ruled out com-
pletely.

5.2 Running Time
For the security definition, we need the notion of running

time of algorithms. We will use a probabilistic RAM model
based on [14], in which arbitrary registers can be accessed
in constant time. We also adopt the convention that “time”
refers to the actual running time plus the size of the code
(relative to some fixed programming language), see, e. g., [5].
Oracle queries are answered in unit time. We assume that
the running time of the algorithms of the signature scheme
is as follow: Generating a key pair takes time tG, signing or
verifying a bit-string with l bits takes time tS(l) or tV (l),
respectively.

5.3 Security Definition
We now define when a protocol is called secure by defining

a function which matches client and server traces. We will
only consider the acceptance trace of a client instance Γi

c,s,

which is the subsequence of all steps in the trace tri
c,s of the

form (n, . . . ,A). We also say that an instance accepts at step
n if there is an entry of the form (n, . . . ,A) or (n, . . . ,A, . . .)
in its trace.

Depending on the result of the experiment, we define the
event NoMatchΠ,A, which is intended to model the event
that the adversary A has successfully “broken” the protocol
Π. A partner function is a partial map f : IDs× IDs×N→
N. Informally, for each client instance Γi

c,s, the function f
points to a step (identified by step counter n) in which the
server accepts the message sent from c to s in session i, if
there is such a step.

If a “matching” partner function (see below) can be de-
fined, then the experiment was successful in the sense that
the adversary did not compromise authenticity of the mes-
sage exchange. More formally, matching w. r. t. a given
partner function is defined as follows.

1. A trace tri
c,s of a client c matches the server trace trs of

the server s w. r. t. a given partner function f if the ac-
ceptance trace of Γi

c,s is of the form (n1, send, t1, pc,mc,
A)(n4, receive, t4, ps,ms,A) and there are timestamps
t2, t3, step numbers n1 < n2 < n3 < n4, and a han-
dle h such that (n2, receive, t2, pc,mc,A, c, h) ∈ trs and
(n3, send, t3, ps,ms,A, c, h) ∈ trs, and f(c, s, i) = n2.

2. A step (n2, receive, t2, pc,mc,A, c, h) in the trace trs of
a server s matches the client trace tri

c,s of the client c
w. r. t. a given partner function f if f(c, s, i) = n2

and the first accepting step in tri
c,s is of the form

(n1, send, t1, pc,mc,A) for some t1 and n1 < n2.

For a partner function f , the event NoMatchf
Π,A (designed

to model that f is not a partner function that validates the
communication in the result of the experiment) consists of
two cases:
(a) There are parties c and s, a session number i, and a step

number n4, such that c and s are not corrupted at step
n4, the client instance Γi

c,s accepts at step n4, but the

trace tri
c,s does not match the server trace trs w. r. t. f ,

or
(b) there are parties c and s and a step number n2, such

that c is not corrupted at step n2, and there is a step
(n2, receive, t2, pc,mc,A, c, h) ∈ trs for which no session
number i exists such that the step matches the client
trace tri

c,s w. r. t. f .

The event NoMatchΠ,A denotes that NoMatchf
Π,A occurs for

all partial functions f : IDs× IDs×N→ N when the experi-
ment is run with protocol Π, and adversary A, i. e., the event
that there does not exist a partner function that validates
the success of the experiment.

The advantage of an adversary A running against Π is the
probability that the adversary is successful in breaking the
protocol, formally defined by AdvΠ,A = Pr [NoMatchΠ,A].

An adversary is called (t, nID, nrcv, nsend, nsign, ntime, ncor,
ldata)-adversary if the following holds: Its overall running
time is bounded by t; the adversary selects no more than
nID identities in its first step, and for each of these iden-
tities, the number of calls with receive, send, sign, or time
instructions is bounded by nrcv, nsend, nsign, and ntime, re-
spectively; in each of these calls, the size of the payload or
message provided to the principal is no more than ldata; and
the total number of principals corrupted by the adversary is
not larger than ncor.

Definition 2. A 2AMEX protocol Π is (t, nID, nrcv, nsend,
nsign, ntime, ncor, ldata, ε)-secure if we have AdvΠ,A ≤ ε for any
(t, nID, nrcv, nsend, nsign, ntime, ncor, ldata)-adversary A.

Note that our notion of security takes care of replay at-
tacks: If a server accepts a message mc twice from the same
client c, then in the trace trs there are two different entries
having step counters n1 6= n2. If the event NoMatch does not
occur, there must be a partner function f and tuples (c, s, i1)
and (c, s, i2) such that f(c, s, i1) = n1 and f(c, s, i2) = n2.
Since f is a function and n1 6= n2, it follows that i1 6= i2.
Therefore, the client c did send the message mc twice: once
in session i1, and once in session i2. Hence, our notion of se-

curity does allow a server to accept the same message twice,
but only if it also has been sent twice.

However, the server has no way of knowing whether a mes-
sage that has been received twice was also sent twice. There-
fore, protocols satisfying our security definition will have to
be designed in such a way that a message is accepted at
most once by a server (with all but negligible probability).—
Observe that it is of course allowed for the server to accept
the same payload twice from the same client.

6. MAIN RESULT: CORRECTNESS AND
SECURITY OF 2AMEX-1

First, we state that 2AMEX-1 is indeed correct:

Theorem 1. The protocol 2AMEX-1 with message id
length lnc is an (n, ε)-correct 2AMEX protocol, where ε =
1− 2−n·lnc ·

∏n+1
i=0 (2lnc − i).

Now, following a standard approach, we show that
2AMEX-1 is secure: For each adversary against 2AMEX-1
we construct an adversary against the underlying signature
scheme with comparable running time and success probabil-
ity. We first recall a standard security notion for signature
schemes, namely strong existential unforgeability under cho-
sen message attacks (sEUF-CMA, see, e. g., [1]): An adver-
sary against a signature scheme is a probabilistic algorithm
that as input receives a public key pk generated by the key
generation algorithm, and has access to a signature oracle
O, which on input m generates a valid signature of m corre-
sponding to the public key pk. The adversary is successful
if it produces a pair (m,σ) with a valid signature σ of m
(corresponding to pk) that has not been generated by the
oracle O. For a running time t, natural numbers q and l,
and a probability ε, the adversary (t, q, l, ε)-breaks the sig-
nature scheme if it runs in time bounded by t, uses at most
q oracle queries, each query is of length at most l, and is
successful with probability at least ε. Consequently, a sig-
nature scheme is (t, q, l, ε)-secure if there is no adversary
that (t, q, l, ε)-breaks it.

Theorem 2. 2AMEX-1 is (t1, nID, nrcv, nsend, nsign, ntime,
ncor, ldata, ε1)-secure if the signature scheme used is (t2, q2,
l2, ε2)-secure with t2 ∈ O(t1 + nID · (tG + nops · (capmax ·
(lID + ltime) + tS(lmsg))), q2 ≤ nsign + nsend, l2 ≤ lmsg, and

ε2 ≥
ε1

nID
+

2lnc !

(2lnc − nID · nsend)! · 2lnc·nID·nsend
− 1 , (1)

where nops = nrcv + nsend + nsign + ntime, the maximum of the
capacities of all servers is capmax, and lmsg ∈ O(lID + lnc +
ltime + ldata).

The security proof for our protocol, see Section 8, first
establishes that in 2AMEX-1, no server accepts the same
message twice, therefore replay-attacks in their most obvi-
ous form are impossible. We then prove that every “break”
of our protocol (i.e., every occurrence of NoMatchΠ,A) im-
plies that collision of message id’s or existential forgery of
a signature happened. We then use this fact to construct a
simulator that uses an adversary against 2AMEX-1 and a
“simulated” protocol environment to construct an adversary
against the signature scheme. Theorem 2 then follows from
a precise analysis of the resources used and success proba-
bility achieved by the thus-obtained adversary. We mention

in passing that the constants hidden in the O-notation in
Theorem 2 are reasonably small (≤ 100).

Often, a Turing-machine based asymptotic notion of secu-
rity is considered, where it is required that the success prob-
ability of every polynomial-time adversary drops rapidly
when the security parameter (in our case, this reflects the
length of the keys for the signature scheme as well as the
nonce length lnc) increases. Since Cook and Reckhow proved
that RAM machines and Turing machines are polynomially
equivalent [14], the above Theorem 2 implies the following
(see [20] for details):

Corallary 1. 2AMEX-1 is asymptotically secure if it is
used with a signature scheme that is asymptotically sEUF-
CMA secure.

Remark 2. Note that our security definition is strong in
the sense that the messages in the client and server traces
have to match exactly. Therefore, for our protocol to be
asymptotically secure, we need a signature scheme that
is secure against strong existential unforgeability. If, for
2AMEX-1, we allow the adversary to replace the signature of
a message with another valid signature of the same message
with the same key (which yields a reasonable, but weaker se-
curity notion), then one can work with ordinary existential
unforgeability (EUF-CMA).

A general way to obtain a weaker, but still satisfying secu-
rity definition is as follows. First, we define an equivalence
relation on messages: We say that two messages m1 and
m2 are equivalent if the following holds for both the client
and the server algorithm. For any fixed sequence of random
coin flips and input parameters (except the input message),
all output values of the algorithm called with message m1

are identical to the values produced by the algorithm when
called with message m2. Now the definition of matching
traces is relaxed: Two traces match if the message received
by one party is equivalent to the message sent by the other
party.— It can be shown that 2AMEX-1 is secure in this
sense if the underlying signature scheme is EUF-CMA se-
cure only.

7. CORRECTNESS OF 2AMEX-1
We now prove Theorem 1. Note that there are 2lnc differ-

ent message id’s, hence the probability of all of these message
id’s being different is exactly

2lnc · (2lnc − 1) · (2lnc − 2) · · · · · (2lnc − n+ 1)

(2lnc)n
, (2)

thus ε from the statement of the theorem is the probability of
a collision of message id’s. It therefore suffices to show that
the relevant messages are always accepted, unless there are
two different client sessions that choose the same message
id.

So assume that there are no collisions of message id’s, let
(n1, send, t1, pc,mc,A) ∈ tri

c,s and (n2, receive, t2, p
′
c,mc, δs,

c′, h) ∈ trs in an experiment where A is a benign adversary,
and assume that t1 ∈ ϕ(s, µs(n2), t2).

First, note that the message id of mc can only be the
same as that of a message that was previously delivered to
s if a collision in the above sense occurs, since A is benign
and therefore delivers mc at most once to s. Hence, we can
assume n1 < n2. We show that none of the four cases that
lead to rejection of the message on the server side happens,

unless a collision of message id’s has occurs. Since mc was
created by the client instance Γi

c,s, we know that the To-
and From-fields of mc are s and c, respectively, and that
mc was signed with c’s private key. Due to the above, we
also know that unless a collision appeared, mc’s message
id does not already appear in the set L maintained by s.
Finally, the message cannot be rejected in step 1(c), since by
the prerequisites, τ(mc) = t1 ∈ ϕ(s, µs(ns), t2). Thus, the
server accepts in all cases where no collision has occurred.
By construction of the protocol, it is also clear that the
server concludes that the message has been sent by c, and
that p′c = pc because the Body-Field of mc equals pc.

Now assume that additionally (n3, send, t3, ps,ms,A, c
′,

h) ∈ trs and (n4, receive, t4, p
′
s,ms, δc) ∈ tri

c,s with n2 < n3

and n1 < n4, but with no (n′, . . . ,A, . . .) ∈ trs such that
n2 < n′ < n3.

First, we know that the server only generates one response
for the incoming message mc (as he overwrites c with ε in the
tuple (t, r, c) in L after sending the response), and since the
adversary is benign, this response is delivered only once to
c, so n4 is the only step in which a response can be accepted
by c. Now we know that the probability of rejection by the
client is zero, because the To-field of the response is set to
c, the message id is correct as it was stored in the server’s
memory (which was not reset between n2 and n3), and the
server’s signature is correct. Thus, the client accepts the
message at n4 and we also have p′s = ps because the Body-
field of the response is set to ps by the server.

8. SECURITY OF 2AMEX-1
To prove Theorem 2, we perform a concrete security anal-

ysis of 2AMEX-1: We show that an adversary with a given
resource bound and success probability against 2AMEX-1
immediately leads to an attack on the signature scheme with
resource bound and success probability “close” to the ones
of the given adversary against 2AMEX-1.

We proceed in two steps: We first show that every success-
ful attack against 2AMEX-1 must involve the forgery of a
signature of an uncorrupted principal, or the collision of two
nonces chosen by the client algorithm. Since both of these
events happen with very low probability only (provided that
the signature scheme is secure), this implies that 2AMEX-1
is secure in an asymptotic sense.

In a second step, for a more detailed analysis, we pro-
vide a simulator Sim which turns any adversary A against
2AMEX-1 into an adversary SimA against the signature
scheme. We then analyze the success probability of SimA,
which is “close” to the success probability of A, and the run-
ning time of SimA, which is, roughly speaking, linear in the
running time of A.

Note that the first part of the proof does not rely on any
assumptions about the security of the signature scheme.

8.1 Attack Implies Collision or Forgery

Theorem 3. Let A be an arbitrary adversary. Then for
every run of the experiment Exp2AMEX-1,A in which the event
NoMatch2AMEX-1,A occurs, one of the following events occurs
as well:
(a) There are two client instances Γi

c,s and Γi′
c,s with i 6= i′,

and both client sessions chose the same message id,
(b) A produced a bitstring that is accepted as a valid signa-

ture for an uncorrupted identity a, which was not ob-

tained from the client or server algorithms or the signa-
ture oracle.

Note that to achieve the properties mentioned in the the-
orem, the client algorithm could also use a counter to de-
termine fresh message id’s for each message. This would be
sufficient to ensure security of our protocol, but comes with
the price of the client having to maintain a long-term state.
To prove Theorem 3, we first show that 2AMEX-1 is resis-
tant against replay attacks. The following lemma states that
the same message is not accepted twice by a server during
a protocol run:

Lemma 1. Let A be an adversary and s ∈ IDs. Then in
every run of Exp2AMEX-1,A, if (n1, receive, ts(n1), p1,m1,A,
c1, h1) and (n2, receive, ts(n2), p2,m2,A, c2, h2) are entries
in trs with m1 = m2, then n1 = n2.

For the proof, we define the following notation: For a
server identity s, let tsmin(n) denote the value of s’s internal
variable tmin before step n.

Assume that a server s accepts a message m = {(From : c,
To : s,MsgID : r,Time : t,Body : x)}skc twice, at steps n1 and
n2, where n1 < n2. Then at the step n1, the pair (t, r, c) is
inserted into L. At point n2, since s accepts the message m
again, we know that (t, r, c) is not contained in L anymore.
Also, tsmin(n2) < t (otherwise, s rejects).

Assume there was no reset between n1 and n2. Since
(t, r, c) has been removed from L at some point before n2,
we know that tsmin(n2) ≥ t due to the construction of the
protocol. This is a contradiction to the above.

Hence a reset happened at step nr, where n1 < nr < n2.
Due to the monotonicity of the clocks, ts(n1) ≤ ts(nr). Since
the server accepted the message m with timestamp t at point
n1, we know that t ≤ ts(n1) + tol+s . We also know that
ts(nr) + tol+s ≤ tsmin(n2), since the server runs 2AMEX-
1. Therefore we conclude tsmin(n2) < t ≤ ts(n1) + tol+s ≤
ts(nr) + tol+s ≤ tsmin(n2)—a contradiction.

Note that the preceding proof is the only situation where
we actually use monotonicity of the clocks—it is obvious that
clocks are needed only to circumvent replay attacks. Also,
it is immediate from the proof that it suffices to demand
that clocks of participants who act in the server role are
monotone.

We now prove Theorem 3: Fix a run of the experiment
Exp2AMEX-1,A in which the event NoMatch2AMEX-1,A ap-
pears. Note that by construction of the experiment, every
signature for a valid 2AMEX-1 message that AAUT did not
generate internally (possibly with access to the secret key
after corruption) appears in the trace of the corresponding
principals: By definition, such messages are elements of the
exception set E∗, and hence the signature oracle S refuses
to sign these bitstrings. We now define a partner function
as follows: For every client instance Γi

c,s, if the first ac-

cepting step in tri
c,s (which must be a send-instruction) is

(n, send, t, p,m,A), then let f(c, s, i) = n′, where n′ is the
smallest step number referring to an accepting receive-query
of the server instance Σs with incoming message m, if such
a step exists. Let f(c, s, i) be undefined otherwise. In par-
ticular, NoMatchf appears. By the prerequisites, we know
that NoMatch occurs in the protocol run. Now indirectly as-
sume that neither existential forgery against an uncorrupted
key, nor collision of message id’s for client sessions Γi

c,s and

Γi′
c,s for i 6= i′ occurs. We distinguish the two cases in the

definition of NoMatchf (see Section 5.3).
First Case. Assume that case (a) occurs. By defi-

nition of the NoMatch event, there are parties c, s, a
session number i, and a step n4 such that c and s are
not corrupted at step n4, the client Γi

c,s accepted at

n4, but tri
c,s does not match the server trace trs w. r. t.

f . This means that the accepting steps of tri
c,s are

of the form (n1, send, t1, pc,mc,A)(n4, receive, t4, ps,ms,A),
but there are no t2, t3, n2, n3, h′ with n1 < n2 <
n3 < n4, such that (n2, receive, t2, pc,mc,A, c, h

′) ∈ trs and
(n3, send, t3, ps,ms,A, c, h

′) ∈ trs with f(c, s, i) = n2. Since
both c and s are not corrupt at step n4, the signature oracle
available to A does not allow the signing of valid protocol
messages, and we assumed that existential forgery did not
occur, it follows that every valid protocol message signed
with the keys of c or s that was obtained before the step n4

were obtained by a call of the client or server instance.
Since the client Γi

c,s accepted the incoming message ms,
we know that ms is a valid 2AMEX-1 message send by a
server with s’s signature. Note that 2AMEX-1 allows to
distinguish messages sent by client or by servers: The for-
mer contain a message id, the latter a reference to one. By
the above, this means that A obtained ms from a call to
the server instance Σs. By construction of the protocol, this
means that there is an entry (n3, send, t3, p

′
s,ms,A, c

′, h) in
the server trace trs, and since A had access to ms in step
n4, it follows that n3 < n4. Since the client instance Γi

c,s

extracted the payload ps from ms, and the server instance
Σs encapsulated the payload p′s into ms, it follows that
ps = p′s. Since Γi

c,s accepts ms, it is addressed to c, and by
construction of the protocol it follows that c = c′. There-
fore the above step in trs is (n3, send, t3, ps,ms,A, c, h), with
n3 < n4.

Further, we know that a server s accepts a send-request
only if there is a preceding receive-request accepted by s
with a matching message handle (i. e., a message id). Hence
there is an entry (n2, receive, t2, p

′
c,m

′
c,A, c

′′, h) in the trace
trs with n2 < n3, and there is no accepted receive instruction
or send instruction with message handle h in trs with a step
number between n2 and n3. By construction of the protocol,
it follows that c′′ = c. Since Σs accepts the message m′c and
determines the sender to be c′′ = c, it follows that m′c is a
valid 2AMEX-1 client message, is addressed to s, and carries
a correct signature for c’s key. Due to the above, and since
m′c is addressed to the server s, we can assume that m′c was

obtained by the call of a client instance Γi′
c,s. Hence there is

an entry (n′1, send, t′1, p
′′
c ,m

′
c,A) with n′1 < n2 in the client

trace tri′
c,s. Since the payload p′′c was encapsulated into m′c,

and p′c was extracted from m′c, it follows that p′′c = p′c.
Since Γi

c,s accepts ms, we know that (due to the veri-
fication of message id’s, and since we assumed that col-

lision of id’s between Γi
c,s and Γi′

c,s for i 6= i′ does not
occur) ms contains a reference to the message id of mc,
which encapsulated the payload pc. Since ms was created
by Σs using the message handle that Σs output when pro-
cessing m′c, we know from the construction of 2AMEX-1
that ms carries a reference to the message id contained in
m′c. Hence mc and m′c have the same message id, and by
the above assumption it follows that m′c = mc, implying
p′c = pc = p′′c . It follows that the above step in trs is of
the form (n2, receive, t2, pc,mc,A, c, h). Again due to our as-

sumption that collisions of message id’s do not occur, and
since mc was created in both the client session i and in the
session i′, it further follows that i = i′ and thus n1 = n′1,
which implies n1 < n2 < n3 < n4. In particular, the mes-
sage mc was sent by the client instance Γi

c,s.
We now show that f(c, s, i) = n2. By construction,

since mc is the message created by the client instance Γi
c,s,

f(c, s, i) = n, where n is the lowest step number such that
Σs accepted the message mc in step n. By the above, we
know that Σs accepted mc in step n2. By Lemma 1, we
know that a server accepts a message at most once. Hence
it follows that n2 = n, and by the steps exhibited in the
server trace trs above, we know that the trace tri

c,s matches
the server trace trs w. r. t. f—a contradiction.

Second Case. In case (b), there are parties c and s and a
step n2 such that c is not corrupted in step n2, and there
is a step (n2, receive, t2, pc,mc,A, c, h) in the trace trs which
does not match tri

c,s for any session number i, i. e., there is

no i such that the first accepting entry in tri
c,s is of the

form (n1, send, t1, pc,mc,A) for some n1 < n2 such that
f(c, s, i) = n2.

Since s accepts mc and determines that it has been sent
by c, we know that mc carries a valid signature by c, and is a
2AMEX-1 message. Since we assume that existential forgery
does not occur, c is not corrupt in step n2, and mc is ad-
dressed to s, we know that mc was obtained from a client
instance Γi

c,s. Hence there is an entry (n1, send, t1, p
′
c,mc,A)

in tri
c,s, with n1 < n2 (since mc must be obtained before

the adversary can use it). Since p′c is the payload encap-
sulated in mc and pc is the payload extracted from pc, it
follows that pc = p′c. Hence the above step is of the form
(n1, send, t1, pc,mc,A). Since mc is the message created by
the instance Γi

c,s and mc was accepted by Σs in step n2 (and,
by Lemma 1, in no other step), it follows that f(c, s, i) = n2.
Hence the step (n2, receive, t2, pc,mc,A) matches the trace
tri

c,s—a contradiction.

8.2 Concrete Analysis
We now prove Theorem 2. Let Π denote the protocol

2AMEX-1. As noted above, we provide a simulator Sim
which turns an adversary A against 2AMEX-1 into an ad-
versary SimA against the signature scheme. By abuse of
terminology, we also refer to the adversary SimA as “the
simulator” to distinguish it from the adversary A.

Let A be a (t, nID, nrcv, nsend, nsign, ntime, ncor, ldata)-adver-
sary against the protocol 2AMEX-1 which has an advantage
AdvΠ,A. Let S = (G,S, V) be the signature scheme used in
the protocol. We will analyze the adversary SimA against
the signature scheme S. Thus, SimA will be given a public
key pk? and a signature oracle O?; to successfully break
the signature scheme, it has to provide a message m and a
signature σ such that V ((m,σ), pk?) returns true.

We briefly sketch what the simulator does. Roughly spea-
king, the simulator runs the experiment from Table 2, where
it replaces one (randomly chosen) public key with pk?. If a
message has to be signed with the corresponding private key
or if the adversary uses the corresponding signature oracle,
the simulator uses O? and logs the signature. All other
queries of the adversary are answered according to the pro-
tocol specification. If the adversary is successful because
it manages to forge a signature which has not been pro-
duced by O? and thus not logged, the simulator outputs this
forgery; if not, the simulator fails. The details are omitted

because of the space limit.
Success probability. First, we analyze the advantage

AdvS,SimA of the simulator SimA against the signature
scheme S.

We define NoMatcha
Π,A to be the event where the adver-

sary is successful against an identity a, either by forging
a signature under a’s identity without corrupting a’s pri-
vate key, or because two client instances of a chose col-
liding message id’s. Due to Theorem 3 we know that
NoMatch =

⋃
a∈A NoMatcha. Thus, we have

AdvΠ,A = Pr(NoMatchΠ,A) ≤
∑
a∈A

Pr(NoMatcha
Π,A) . (3)

Now let Sima
A be the variant of the simulator SimA that

replaces a’s public key with pk?. This simulator is successful
if the event NoMatcha

Π,A occurs, but no message id’s collide,

which we denote by CollΠ,A. Thus, we have

AdvS,Sima
A
≥ Pr(NoMatcha

Π,A ∩ CollΠ,A) . (4)

The probability Pr(NoMatcha
Π,A ∩ CollΠ,A) is at least

Pr(NoMatcha
Π,A)− Pr(CollΠ,A), where CollΠ,A denotes that

a collision occurred.
As the simulator SimA chooses some a ∈ A at random and

replaces a’s public key with pk?, we have

AdvS,SimA =
1

nID

∑
a∈A

AdvS,Sima
A

(5)

≥ 1

nID

∑
a∈A

Pr(NoMatcha
Π,A ∩ CollΠ,A) (6)

≥ 1

nID

∑
a∈A

(
Pr(NoMatcha

Π,A)− Pr(CollΠ,A)
)

(7)

≥ 1

nID
Pr(NoMatchΠ,A)− Pr(CollΠ,A) (8)

=
AdvΠ,A

nID
− Pr(CollΠ,A) . (9)

Finally, the probability Pr(CollΠ,A) can be calculated as
follows: For each send action of a client, one message id
of length lnc is randomly chosen. Thus, at most nID · nsend

message id’s are chosen from a set of size 2lnc . The resulting
probability of a collision is given by

Pr(CollΠ,A) = 1− 2lnc !

(2lnc − nID · nsend)! · 2lnc·nID·nsend
. (10)

Running Time. We now analyze the running time of the
simulator SimA. We first give an asymptotic analysis and
then simplify the resulting term for the running time given
certain assumptions. First, let capmax = max{caps | s ∈
IDs}.

As we use the algorithms of the signature scheme, we use
the following variables and functions to denote their running
time: Generating a key pair takes tG time, signing or verify-
ing a bit-string with l bits takes tS(l) or tV (l) time, respec-
tively. We assume that tV (l) ∈ O(tS(l)) and tS(l) ∈ Ω(l).

We also use maps to store keys and associated values.
We assume the time to initialize a new map is constant, we
denote the time of the other operations on the map (add,
remove, lookup) with tmap(n, l) where n is the maximal num-
ber of entries in the map and l is the maximal length of the
keys. On the machine model we use, the operations (add,
remove, lookup) can be performed in time linear in l, e. g.,
by using Tries.

Another prerequisite we use is a pair of an en-
coding function and a decoding function (E,D) which
can merge multiple bit strings into a single bit string
and extract a number of bit strings from a single bit
string, respectively. For each operation mode (o, n) ∈
{(tuple, 2), (request, 5), (response, 4), (signature, 2)} and all
bit strings β1, . . . , βn, we assume D(o, E(o, β1, . . . , βn)) =
(β1, . . . , βn) and |E(o, β1, . . . , βn)| ∈ O(

∑n
i=1 |βi|).

Now, the running time of the single functions can be
bounded as shown in Table 3 for a fixed lmsg ∈ O(lID +
lnc + ltime + ldata). Then the overall running time of the
simulator SimA, denoted t, is as follows, where nops = nrcv +
nsend + nsign + ntime:

t ∈O(tA + nIDtG + ncortcorrupt + nIDnsigntsign

+ nIDntimettime + nID · (nsend · (tclientSend + tserverSend)

+ nrcv · (tclientReceive + tserverReceive))

=O(tA + nID · (tG + nops · (tS(lmsg)

+ tmap(capmax, lnc) + tmap(nsign + nsend, lmsg)

+ tmap(nID, lID)) + capmax · (lID + ltime)))

=O(tA + nID(tG + nops(tS(lmsg) + capmax(lID + ltime)))).

Note that the machine model we use would allow us to
address arbitrary registers, e. g., we could directly use bit-
strings (encoded as numbers) as register numbers to store or
retrieve information and thus replace, e. g., the map which
stores information about messages signed so far and their
signatures—this would result in an unrealistic speedup for
our algorithms and the use of an exponential number of reg-
isters in the length of messages. However, our simulator only
uses these capabilities of the model in the standard way. In
particular, the adversary SimA obtained by our construction
is a natural and realistic adversary.

Finally, note that the simulator SimA makes at most
nsign + nsend queries to the signature oracle it is provided
with, as this is the maximal number of calls to the sign

function per identity. In each of these calls, at most lmsg are
being signed. Thus, the total number of bits signed by the
oracle is at most (nsign + nsend) · lmsg.

9. CONCLUSION
We provided a framework for analyzing cryptographic pro-

tocols for the practically relevant goal of two-round authen-

ttime ∈ O(tuserNr)

tclientSend ∈ O(tuserNr + tsign)

tserverReceive ∈ O(tuserNr + tverify + capmax · (lID + ltime)

+ tmap(capmax, lnc))

tserverSend ∈ O(tuserNr + tsign + tmap(capmax, lnc))

tclientReceive ∈ O(tuserNr + tverify)

tcorrupt ∈ O(tuserNr)

tsign ∈ O(tuserNr + tS(lmsg) + tmap(nsign + nsend, lmsg))

tverify ∈ O(tuserNr + tV (lmsg) + tmap(nsign + nsend, lmsg))

tuserNr ∈ O(tmap(nID, lID))

Table 3: Running times of the procedures of the
simulator

ticated message exchange, taking into account common pro-
tocol elements such as timestamps, nonces, signatures, and
signed parts. For the first time, this allows sound crypto-
graphic security proofs of protocols in this setting. Using our
framework we proved secure the protocol 2AMEX-1, which
had not been specified in detail before, but variants of which
are widely used in practice.

10. REFERENCES
[1] J. H. An, Y. Dodis, and T. Rabin. On the security of

joint signature and encryption. In L. R. Knudsen,
editor, EUROCRYPT, volume 2332 of LNCS, pages
83–107. Springer, 2002.

[2] N. Asokan, V. Shoup, and M. Waidner. Optimistic fair
exchange of digital signatures (extended abstract). In
EUROCRYPT, pages 591–606, 1998.

[3] M. Backes and B. Pfitzmann. A cryptographically
sound security proof of the needham-schroeder-lowe
public-key protocol. In FSTTCS, pages 1–12, 2003.

[4] M. Backes, B. Pfitzmann, and M. Waidner. A
composable cryptographic library with nested
operations. In S. Jajodia, V. Atluri, and T. Jaeger,
editors, CCS 2003, pages 220–230. ACM, 2003.

[5] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A
concrete security treatment of symmetric encryption.
In FOCS, pages 394–403, 1997.

[6] M. Bellare, M. Fischlin, S. Goldwasser, and S. Micali.
Identification protocols secure against reset attacks. In
B. Pfitzmann, editor, EUROCRYPT, volume 2045 of
LNCS, pages 495–511. Springer, 2001.

[7] M. Bellare and P. Rogaway. Entity authentication and
key distribution. In D. Stinson, editor, CRYPTO,
volume 773 of LNCS, pages 232–249. Springer-Verlag,
1993.

[8] K. Bhargavan, C. Fournet, and A. D. Gordon. A
semantics for web services authentication. In N. D.
Jones and X. Leroy, editors, POPL, pages 198–209.
ACM, 2004.

[9] K. Bhargavan, C. Fournet, A. D. Gordon, and
R. Pucella. Tulafale: A security tool for web services.
In F. S. de Boer, M. M. Bonsangue, S. Graf, and
W. P. de Roever, editors, FMCO, volume 3188 of
LNCS, pages 197–222. Springer, 2003.

[10] L. Bozga, C. Ene, and Y. Lakhnech. A symbolic
decision procedure for cryptographic protocols with
time stamps. J. Log. Alg. Prog., 65(1):1–35, 2005.

[11] R. Canetti. Universally Composable Security: A New
Paradigm for Cryptographic Protocols. In FOCS,
pages 136–145. IEEE Computer Society, 2001.

[12] R. Canetti, L. Cheung, D. K. Kaynar, N. A. Lynch,
and O. Pereira. Modeling computational security in
long-lived systems. In F. van Breugel and M. Chechik,
editors, CONCUR, volume 5201 of LNCS, pages
114–130. Springer, 2008.

[13] R. Canetti and J. Herzog. Universally composable
symbolic analysis of mutual authentication and
key-exchange protocols. In S. Halevi and T. Rabin,
editors, TCC, volume 3876 of LNCS, pages 380–403.
Springer, 2006.

[14] S. A. Cook and R. A. Reckhow. Time bounded
random access machines. J. Comput. Syst. Sci.,
7(4):354–375, 1973.

[15] V. Cortier, S. Delaune, and P. Lafourcade. A survey of
algebraic properties used in cryptographic protocols.
J. Comput. Sec., 14(1):1–43, 2006.

[16] G. Delzanno and P. Ganty. Automatic verification of
time sensitive cryptographic protocols. In K. Jensen
and A. Podelski, editors, TACAS, volume 2988 of
LNCS, pages 342–356. Springer, 2004.

[17] D. E. Denning and G. M. Sacco. Timestamps in key
distribution protocols. Comm. ACM, 24(8):533–536,
1981.

[18] J. A. Garay, M. Jakobsson, and P. D. MacKenzie.
Abuse-free optimistic contract signing. In M. J.
Wiener, editor, CRYPTO, volume 1666 of LNCS,
pages 449–466. Springer, 1999.

[19] Y. T. Kalai, Y. Lindell, and M. Prabhakaran.
Concurrent composition of secure protocols in the
timing model. J. Cryptology, 20(4):431–492, 2007.

[20] K. O. Kürtz, H. Schnoor, and T. Wilke.
Computationally secure two-round authenticated
message exchange. Cryptology ePrint Archive, Report
2009/262, 2009. http://eprint.iacr.org/.

[21] K. O. Kürtz, H. Schnoor, and T. Wilke. A
simulation-based treatment of authenticated message
exchange. In A. Datta, editor, ASIAN, volume 5913 of
LNCS, pages 109–123. Springer, 2009.

[22] R. Küsters. Simulation-based security with
inexhaustible interactive turing machines. In CSFW,
pages 309–320. IEEE Computer Society, 2006.

[23] C. K. Liu and D. Booth. Web services description
language (WSDL) version 2.0 part 0: Primer. W3C
recommendation, W3C, 2007.

[24] G. Lowe. Breaking and fixing the Needham-Schroeder
public-key protocol using FDR. In T. Margaria and
B. Steffen, editors, TACAS, volume 1055 of LNCS,
pages 147–166. Springer, 1996.

[25] N. Mitra and Y. Lafon. SOAP version 1.2 part 0:
Primer (second edition). Technical report, W3C, 2007.

[26] A. Nadalin, M. Goodner, M. Gudgin, A. Barbir, and
H. Granqvist. WS-SecurityPolicy 1.2. Technical
report, OASIS Web Services Secure Exchange TC,
2007. OASIS Standard.

[27] A. Nadalin, C. Kaler, R. Monzillo, and
P. Hallam-Baker. Web services security: SOAP
message security 1.1 (WS-Security 2004). Technical
report, OASIS Web Services Security TC, 2006.
OASIS Standard.

[28] R. M. Needham and M. D. Schroeder. Using
encryption for authentication in large networks of
computers. Comm. ACM, 21(12):993–999, 1978.

[29] P. Rogaway and T. Stegers. Authentication without
elision: Partially specified protocols, associated data,
and cryptographic models described by code. In CSF,
pages 26–39. IEEE Computer Society, 2009.

[30] Sun Microsystems. RPC: Remote procedure call
protocol specification version 2. IETF RFC 1057
(Informational), 1998.

[31] B. Warinschi. A computational analysis of the
Needham-Schroeder-(Lowe) protocol. J. Comput. Sec.,
13(3):565–591, 2005.

[32] D. Winer. XML-RPC specification.
http://www.xmlrpc.com/spec, 1999.

