Security Analysis of Re-Encryption RPC Mix Nets

Ralf Kiisters
University of Trier
Germany
kuesters @uni-trier.de

Abstract—Re-Encryption randomized partial checking (RPC)
mix nets were introduced by Jakobsson, Juels, and Rivest in
2002 and since then have been employed in prominent modern
e-voting systems and in politically binding elections in order to
provide verifiable elections in a simple and efficient way. Being
one of or even the most used mix nets in practice so far, these
mix nets are an interesting and attractive target for rigorous
security analysis.

In this paper, we carry out the first formal cryptographic
analysis of re-encryption RPC mix nets. We show that these
mix nets, with fixes recently proposed by Khazaei and Wik-
strom, provide a good level of verifiability, and more precisely,
accountability: cheating mix servers, who try to manipulate the
election outcome, are caught with high probability. Moreover,
we show that, under the assumption that at least one mix server
is honest, all attacks that would break the privacy of voters’
inputs are caught with a probability of at least 1/4. In many
cases, for example, when penalties are severe or reputation
can be lost, adversaries might not be willing to take this risk,
and hence, would behave in a way that avoids this risk. Now,
for such a class of “risk-avoiding” adversaries, we show that
re-encryption RPC mix nets provide a good level of privacy,
even if only one mix server is honest.

1. Introduction

Mix nets often play a central role in modern e-voting
systems. In such systems, voters’ ballots, which typically
include the voters’ choices in an encrypted form, are posted
on a bulletin board. Then, the ballots are shuffled by a mix
net, which consists of several mix servers, before they are
decrypted. This is supposed to hide the link between a voter’s
ballot and her (plaintext) choice, and hence, guarantee the
voter’s privacy. In the context of e-voting, besides privacy,
it is also crucial that potential manipulations are detected.
That is, if ballots have been dropped or manipulated by a
mix server, this should be detected. This property is called
verifiability.

Many schemes have been proposed in the literature to
obtain verifiable mix nets (see, e.g., [20], [16], [7], [22], [8],
[9], [21], [2]). Some were shown to provide strong security
properties. However, most of these schemes have not been
deployed in real elections so far, with Verificatum [23] being

Tomasz Truderung
Polyas GmbH
Germany
ttruderung @ gmail.com

a prominent exception of a provably secure scheme which
has also been used in practice. The mix nets that are among
or even the most used mix nets in practice to date are so-
called re-encryption RPC (random partial checking) mix nets.
These mix nets were implemented in several prominent e-
voting systems, including Civitas [5] and Prét a Voter [19],
and used in politically binding elections. For example, in a
variant of Prét a Voter, re-encryption RPC mix nets were
recently employed in an election of the Australian state of
Victoria [6]. Some systems, such as Scantegrity [4], which
has also been employed in real political elections, use a
similar technique. Hence, it is important to understand and
analyze the security of re-encryption RPC mix nets.

Re-encryption RPC mix nets were proposed in 2002 by
Jakobsson, Juels, and Rivest [8], as particularly simple and
efficient mix nets. Such mix nets consist of several mix
servers, where the mix servers use a public key encryption
scheme with distributed decryption, with ElGamal being a
common choice. Roughly speaking, these mix nets work as
follows. The input to a re-encryption RPC mix net is a list
of ciphertexts (e.g., encrypted votes), where each ciphertext
is obtained by encrypting a plaintext under a common public
key. Now, the first mix server shuffles the ciphertexts and
re-encrypts them.! The resulting ciphertexts form the output
of this mix server and the input to the next one, which again
shuffles and re-encrypts the ciphertexts, and so on, until the
last mix server has done this. Then, the mix servers together,
in a distributed way, decrypt each ciphertext in the list output
by the last mix server. In order to check whether a mix server
cheated, i.e., manipulated/replaced a ciphertext so that it
carries a different plaintext, so-called random partial checking
is performed for each mix server. For this purpose, every mix
server is supposed to reveal some partial information (chosen
by auditors) about the input/output relation. Jumping ahead,
our results show that this does not require zero-knowledge
proofs.

We note that in the same paper, Jakobsson, Juels, and
Rivest also proposed Chaumian RPC mix nets, where the
input ciphertexts are obtained by nested encryption (using

1. Re-encryption is an operation that can be performed without knowledge
of the private key or the plaintext. Given a ciphertext Enc), (m) obtained
using the public key pk, the plaintext m, ar,1d the random coins r, re-
encryption yields a ciphertext of the form Encj,(m), i.e., one with different

random coins.

different public keys for each layer of encryption) and every
mix server, instead of performing re-encryption, peels off one
layer of encryption. However, to the best of our knowledge,
this construction has not been used in practice so far.

From the design of RPC mix nets it is clear that they
do not provide perfect security: there is some non-negligible
probability that cheating goes undetected and some partial
information about the input/output relation is revealed. As
already argued by Jakobsson, Juels, and Rivest, in the context
of e-voting the penalties for cheating would be so severe
that being caught with some (even small) probability should
deter a mix server from cheating.

Only very recently, Chaumian RPC mix nets have under-
gone first formal cryptographic analysis [14], after Khazaei
and Wikstrom discovered attacks on the verifiability and
privacy of Chaumian RPC mix nets and proposed fixes [10].

Despite their use in practice, so far no formal security
analysis of re-encryption RPC mix nets has been carried out.
In [10], Khazaei and Wikstrom pointed out attacks on re-
encryption RPC mix nets as well, one of which generalizes
an attack by Pfitzmann [18], and proposed fixes, but they
did not carry out any formal analysis. In particular, it was
left as an open question whether these fixes are sufficient
for verifiability. In this paper, we prove that with the fixes,
one obtains a good level of verifiability (see below). As for
privacy, it was clear that the proposed fixes do not prevent
the attacks. However, we can observe that in these attacks
on privacy malicious mix servers risk to be caught with
significant probability. In this paper, we formally prove that
in fact all attacks that would break privacy will be caught
with high probability and that cheating mix servers can be
blamed individually, which should deter them from cheating,
e.g., because of severe penalties they would face. We further
prove that if mix servers want to avoid being caught (risk-
avoiding mix servers, see below), then re-encryption RPC
mix nets provide a high level of privacy. More precisely, the
contributions of this paper are as follows.

Contributions of this paper. We provide the very first
formal security analysis of re-encryption RPC mix nets.
As mentioned, RPC mix nets by design can provide only
restricted forms of verifiability and privacy. Therefore, we
need security notions that allow us to measure the level
of security re-encryption RPC mix nets provide. For this
purpose, we use a definition of privacy which has been used
in the context of e-voting before (see, e.g., [13]) and which
has also been employed for the analysis of Chaumian RPC
mix nets in [14]. This definition focuses on the level of
privacy for individual senders/voters and basically requires
that for every pair of messages an adversary should not be
able to tell which of the two messages a sender has sent. As
for verifiability, we study a stronger notion, namely account-
ability. While verifiability requires merely that misbehavior
should be detectable, accountability, in addition, ensures that
specific misbehaving parties can be blamed. This is crucial
in order to deter parties from misbehaving. Our definition of
accountability for re-encryption RPC mix nets follows the
one proposed in [14], which in turn is based on a general,

domain independent definition of accountability proposed in
[12].

We show that re-encryption RPC mix nets, with the fixes
proposed by Khazaei and Wikstrom, enjoy a reasonable level
of accountability. Essentially, our accountability definition
requires that the multiset of plaintexts in the input ciphertexts
should be the same as the multiset of plaintexts in the output.
We show that, if in the output k or more plaintexts have
been modified (compared to the input), then this remains
undetected with a probability of at most (%)k. Conversely, if
manipulation is detected (which happens with a probability
of at least 1 — (%)k), then at least one mix server can (rightly)
be blamed for misbehaving.

This also shows that re-encryption RPC mix nets have
the same level of accountability as Chaumian RPC mix nets.
The proof of our result follows a similar line of reasoning as
the one for Chaumian RPC mix nets in [14]. However, due
to the different structures and cryptographic primitives used,
the proofs (which are highly non-trivial) of course differ in
the details.

As for privacy, we first introduce the notion of an
(essentially) semi-honest adversary,2 a new notion, which, in
particular, was not considered in [14] for Chaumian RPC mix
nets, but is key to our analysis of privacy of re-encryption
RPC mix nets. Such an adversary, who may control some mix
servers, does not deviate from the protocol in crucial aspects.
Most importantly, an essentially semi-honest adversary/mix
server shuffles and re-encrypts its input as expected (although
the shuffle and other choices might not be random). For these
adversaries, we make the following key observation. If an
adversary does not follow the protocol in an essentially semi-
honest way, then he will be caught with a probability of at
least 1/4. Hence, whenever an adversary decides to deviate
from this semi-honest behavior, he knows that he takes a
relatively high risk of being caught. So, as mentioned, when
penalties are severe and/or reputation can be lost, this risk
will in many cases be sufficiently high to deter adversaries
from deviating from this semi-honest behavior. Therefore, a
risk-avoiding adversary, that is an adversary who wants to
avoid being caught, but otherwise might be willing to cheat
if this goes unnoticed, must behave essentially semi-honestly.
(Conversely, an essentially semi-honest adversary is also risk-
avoiding.) Now, for such adversaries, we show that, under the
common assumption that at least one mix serves is honest,
re-encryption RPC mix nets provide a reasonable level of
privacy, which, in fact, is quite close to the ideal case, where
the adversary only learns the final output of the mix net.
This result is optimal for re-encryption RPC mix nets in the
sense that adversaries who are not willing risk being caught,
cannot break privacy and those adversaries who attempt to
break privacy (using, for example, the attacks by Khazaei
and Wikstrom or any other attempt) will be caught with high
probability.

2. While in the literature semi-honest adversaries are adversaries who
follow the protocol honestly, essentially semi-honest adversaries might not.
For simplicity of terminology, we nevertheless often refer to these adversaries
as “semi-honest”.

We note that Chaumian RPC mix nets, as shown in
[14], provide privacy even for arbitrary polynomial-time
aderversaries, rather than only for risk-avoiding adversaries.

The privacy proof for re-encryption RPC mix nets is,
just as the proof of accountability for these mix nets, again
far from trivial. We also emphasize that this proof differs
substantially from the one for Chaumian RPC mix nets, as
further explained in Section 7.

Structure of this paper. In the next section, re-encryption
RPC mix nets are explained in more detail. We also present
a formal model of these mix nets. Accountability for re-
encryption RPC mixnets is analyzed in Section 4, with the
definition presented in Section 3. In Section 5, we introduce
and discuss the notions of essentially semi-honest and risk-
avoiding adversaries mentioned above. We then define and
analyze privacy for re-encryption RPC mixnets in Sections 6
and 7. We conclude in Section 8. Further details are provided
in the appendix, with full details and proofs provided in our
technical report [1].

2. Re-Encryption RPC Mix Net

In this section, we first recall the definition of a re-
encryption RPC mix net [8] with improvements suggested
in [10] and then sketch the formal model of this protocol,
with full details provided in [1].

2.1. Description of the Protocol

Cryptographic primitives. The protocol uses a commit-
ment scheme, which we assume to be computationally
binding and perfectly hiding, with Pedersen commitments
being an example [17] (but a computationally binding and
computationally hiding scheme would do as well) and an
IND-CPA secure, distributed public-key encryption scheme
<, where a set of parties (in our case the mix servers)
independently generate their public and private key shares
and the public key shares are then combined to obtain the
public key. Ciphertexts obtained using this public key can
be decrypted only when all the above parties participate in
the decryption process (all private key shares are necessary
for decryption). We assume that given a public key and a
ciphertext, it can be decided efficiently whether the ciphertext
in fact belongs to the space of possible ciphertexts (this
typically means that one has to be able to decide whether
certain group elements in fact belong to a given group). As
usual for re-encryption mix nets, the encryption scheme . is
also assumed to allow for re-encryption (with the appropriate
hiding property, i.e. semantic security under re-encryption)
and the following standard non-interactive proofs, where
for some we require merely the soundness and completeness
property, for others we in addition require the zero-knowledge
property (NIZKPs) or also the knowledge extraction property:
— a NIZKP of knowledge of the private key share (for a
given public key share),

— a NIZKP of knowledge of the plaintext (for a given
ciphertext and a public key),

— a non-interactive proof of correct re-encryption (such a
proof would typically simply reveal the random coins
used for re-encryption),?

— a NIZKP of correct decryption (more precisely, for
distributed decryption, one needs to prove that a given
decryption share is correct).

Additionally, for the privacy result, we require that the used
distributed encryption scheme allows for decryption share
extractability;* this is straightforward for example in the case
of ElGamal and, in fact, was used in the privacy proof of
the Helios voting system [3]. We recall the precise security
definitions for all mentioned cryptographic primitives in our
technical report [1].

Set of participants. The set of participants of the protocol
consists of a public, append-only bulletin board B, n senders
Si,...S,, m mix servers My,...,M,,_;, and some number
of auditors. In the variant we consider here, we follow the
most common practice to let mix servers play also the role of
decryption servers. Alternatively, we could consider separate
entities in the role of the decryption servers, which would
not change the results provided in this paper.

The role of the auditors is to provide randomness for
the auditing phase. Each auditor outputs a random bit string
(more precisely, he first commits to his random bit string and
later opens the commitment). An honest auditor outputs a bit
string chosen uniformly at random. The bit strings produced
by the auditors are combined to one bit string, say by the
XOR operation. So, if at least one auditor is honest, the
resulting bit string is chosen uniformly at random. We note
that sometimes heuristics are implemented by which this
assumption can be dropped (see [8]). However, as pointed
out in [10], this may lead to some problems. In our formal
model, we consider exactly one auditor, which we assume
to be honest.

Typically, pairs of mix servers are audited. For the sake
of presentation, it is therefore convenient to assume that one
mix server performs two mixing steps. We will consider such
mix servers in this paper.

Now, a re-encryption RPC mix net works in the following
phases: setup, submit, input validation, mixing, and auditing,
where the auditing may be carried out either before or after
the decryption phase. It turns out that for the results presented
in this paper, it does not matter which variant (auditing before
or after decryption) we consider.

Setup phase. In this phase, every mix server M; runs the
key generation algorithm of . to generate a private/public
key pair (sk;, pk;). The public key pk; is then posted on
the bulletin board along with a NIZKP of knowledge of the
corresponding private key. The public keys pko, ..., pku—1 of
all the mix servers are then combined to obtain the encryption
key pk to be used by the senders.

3. We emphasize that here the zero-knowledge property and knowledge
extraction are not necessary.

4. This property, roughly, states that, given a plaintext m, its encryption
¢, and all the private key shares but one, it is possible to compute all valid
decryption shares, including the one for which the private key share is not
given.

Submit phase. In this phase, every (honest) sender S;
chooses her input plaintext m; and encrypts it using the
public key pk to obtain her encrypted input. The sender
also produces a NIZKP of knowledge of the plaintext. The
ciphertext along with the zero-knowledge proof is posted by
the sender on the bulletin board.

Input validation. It is checked whether the NIZKP of
knowledge of the public keys are correct (otherwise, the
protocol is aborted). It is also checked whether the cipher-
texts are valid and whether their NIZKPs of knowledge of
plaintexts are; invalid entries are eliminated (such entries
might have been produced by dishonest senders). Moreover,
for every set of entries with the same ciphertext, only one
entry in this set is kept (the remaining ones are dropped).
Note that input validation can be performed by any party.

The sequence of ciphertexts submitted by the senders and
not rejected in the input validation phase constitute the input
(o to the mixing phase, described below. Let / be the number
of entries in Cyp.

Mixing phase. In what follows, we refer by Cyli] to the i-th
element of the sequence Cyp; similarly for other sequences. As
mentioned above, the sequence of ciphertexts Cy is the input
to the first mix server My which processes it, as described
below, and posts its output (which, again, is a sequence of
ciphertexts) on the bulletin board B. This output becomes the
input to the next mix server M, and so on. We will denote
the input to the j-th mix server by C;; and its output by
C2j42, reserving C ;41 for intermediate output (see Figure 1).
Recall that one mix server performs two mixing steps.

The output C,,, of the last mix server M,,_; is the output
of the mixing stage. It is supposed to contain re-encryptions
of the input Cy (in random order).

The steps taken by every mix server M; are as follows
(see also Figure 1):

1. Validation. M; checks whether its input C; contains
exactly [entries and, if so, whether all these entries
are valid ciphertexts (recall that we assume that this is
possible). If this is not the case, the server stops without
producing any output, the judge (see also below) will
blame M;_; for misbehaving (if j—1 > 0), and the whole
protocol is aborted.

2. First mixing. M; uniformly at random chooses a permu-
tation 7p; of {1,...,/} and posts the sequence Cj| of
length [on B, where, for every i € {1,...,1}, Caj;1[i] is
the result of the re-encryption of Cs;[m;(i)].

3. Second mixing. M}, again, uniformly at random chooses
a permutation m;,1 of {1,...,/} and posts the sequence
Caj+2 of length [on B, where C»j,»[i] is the result of the
re-encryption of Cyj1[mj41(i)]. The sequence Csj; is
posted by M; on B.

4. Posting commitments. M; posts two sequences of commit-
ments on B: commitments to the values m;(1),...,m;(l)
and commitments to the values 7T2j+1 (1),... ’77271]+1 (I) (in
this order).

Auditing phase. The outputs of the mix servers are (par-
tially) audited in order to detect potential misbehaviors. As

Mix server M;

Gy . Cojr1 — Crji2

X4 >@ - —e - (. _ Y4

x3->»—a—\\— - | - G— e)3

X2 \‘\—0—— ————— --&>)2

X1 - 1
first mixing second mixing

Figure 1. Mixing by M;. Solid bold lines represent audited links and dashed
lines represent not audited links.

already noted, depending on the protocol variant, this phase
may be performed before or after the decryption phase. In the
former case, we can further consider a variant where auditing
of a mix server is performed directly after the server has
produced its output or a variant where all the mix servers
are audited directly before the decryption phase. In either
case, if auditing is done before decryption and misbehavior
is detected, the decryption phase is not executed. As already
noted, our results do not depend on which variant is chosen.

Independently of which variant is chosen, the steps taken
in the audit for every individual mix server M; are the same.
First, using the randomness produced by the auditors, for an
initial empty set I; and for every i € {1,...,1} it is randomly
decided, independently of other elements, whether i is added
to I; C {1,...,I} or not. Provided that the random bit strings
jointly produced by the auditors are distributed uniformly
at random, the probably that i belongs to I; is % Now, for
every i € {1,...,1} the mix server M; does the following,
depending on whether i belongs to /; or not:

If i € I}, then the mix server M; is supposed to open (by
posting appropriate information on B) the left link for i, i.e.,
M; is supposed to open its i-th commitment from its first
sequence of commitments, which should be a commitment to
m2;(i). The mix server also has to post a non-interactive proof
of correct re-encryption demonstrating that indeed Cj[i] is
obtained by re-encrypting C»;[m2;(i)]. (As we will prove, this
proof does not have to be zero-knowledge; it could simply
reveal the random coins used to perform the re-encryption.)

If i ¢ I;, then, symmetrically, the mix server is supposed
to open the right link for i, i.e., M; is supposed to open its
i-th commitment from its second sequence of commitments,
which should be a commitment to ﬂ;le (i). As before, the
mix server also has to post a non-interactive proof of correct
re-encryption demonstrating that indeed Csj12 [7r2_j1+1(l)] is
obtained by re-encrypting Csj1]i].

An observer (or a judge) can now verify correctness of the
data output by M; in the audit phase. Firstly, the observer
verifies that commitments are opened correctly. Secondly,
one verifies that the opened indices (both from the first
and the second sequence) do not contain duplicates (if they
do, this means that the mix server has not committed to
a permutation, but to some other, non-bijective function).
Finally, one verifies the proofs of correct re-encryption. As
pointed out in [10], the second step, which often has been

omitted in implementations and is not mentioned in [8], is
crucial for accountability and privacy.

The auditing described above guarantees that for a
message from the sequence C;j either the connection to
some message from C,; or to some message from Cyj47 is
revealed, but never both. Otherwise, an observer could follow
the path of an input message to the corresponding output
message (see also Figure 1 for an illustration). Nevertheless,
some information about the link between the input and the
output is revealed. For example, in Figure 1 an observer
knows that the input values x{,x, map to y,,y3 in some way
and that x3,x4 map to y;,y4 in some way, and hence, for
instance, she learns that x4 does not map to y, or ys.

Decryption phase. In this phase, the mix servers jointly
decrypt every ciphertext from the output of the mixing phase
(that is from Cy,,) and provide NIZKP of correct decryption.

2.2. The Computational Model for Protocols

Our formal analysis is based on a computational model
which follows the one used in [12], [13], which in turn is
based on the IITM model [11], [15]. Below, we briefly recall
this model.

A program is a probabilistic polynomial-time (ppt) inter-
active Turing machine (ITM) with named tapes (here also
called channels). Two programs with channels of the same
name but opposite directions (input/output) are connected
by such channels, i.e., one program can send a message to
the other one via the channel. Sending a message to another
program via a channel triggers the other program. Only one
program is active at a time.

By m=m || -+ || mn we denote a system of programs,
also called a process, where the programs 7; are connected
via channels as described above. One of these programs
is the master program (the one triggered first in a run and
triggered if the active program did not produce output). In our
modeling for re-encryption RPC mix nets, the scheduler (see
below) will be the master. A process m where all programs
are given the security parameter ¢ is denoted by 70,

A protocol P specifies a set of agents (also called parties
or protocol participants) and the channels these agents can
communicate over. Moreover, P specifies, for every agent a,
a set 11, of all programs the agent @ may run and a program
@ty € I1,, the honest program of a, i.e., the program that a
runs if a follows the protocol.

Let P be a protocol with agents ay,...,a,. An instance of
P is a process of the form 7 = (7, || ... || 7a,) With 7y, € I1,,.
An agent a; is honest in the instance , if m,, = 7,,. A run
of P (with security parameter £) is a run r of some instance
7w of P (with security parameter £); 7 is in fact part of the
description of r. An agent a; is honest in a run r, if a; is
honest in the instance belonging to r. A property v of P is
a subset of the set of all runs of P. By =y we denote the
complement of ~.

It is straightforward to model re-encryption mix nets
as a protocol, denoted by Ryix(n,m,u), in the sense of
this computational model (see [1] for the full model). The

set of agents in the protocol in Py (n,m,) consists of
the scheduler, the bulletin board, the auditor, the judge, n
senders, and the m mix servers, where the first four agents
are assumed to be honest, i.e., for each such agent a, I,
contains the honest program only. All other agents can
run arbitrary ppt programs. Honest senders choose their
plaintext input according to the distribution j. This models
that the adversaries knows this distribution, which might
not be completely true in reality but makes our results only
stronger. The task of the scheduler is to trigger all agents
(honest and dishonest) in the appropriate order according
to the phases of the protocol. We assume that it is given
information about which agents are honest and which are
dishonest in order to schedule the agents in the appropriate
way. In particular, the scheduler can schedule agents in a
way advantageous for the adversary (dishonest agents) so
that we obtain stronger security guarantees. For example, the
scheduler first schedules honest senders to post their inputs
on the bulletin board and then schedules dishonest senders.
By this, the input of dishonest senders (the adversary) may
depend on the input of honest senders.

In what follows, we use negligible and overwhelming
functions in the security parameter, which are defined as
usual. A function in the security parameter is A-bounded,
for A € [0,1], if it is bounded by A plus some negligible
function.

3. Defining Accountability of RPC Mix Nets

As mentioned in the introduction, our definition of
accountability for re-encryption RPC mix nets follows the one
proposed in [14], which in turn is based on a general domain
independent definition of accountability proposed in [12].
As demonstrated in [12], accountability implies verifiability.
Therefore, we mostly focus here on accountability, providing
only a short discussion on verifiability.

The (general) definition of accountability of a protocol
from [12] is stated with respect to a property v of the
protocol, called the goal, a parameter A\ € [0,1], and an
agent J of the protocol who is supposed to blame protocol
participants in case of misbehavior (resulting in the violation
of the goal «). The agent J, sometimes referred to as a
Jjudge, can be a “regular” protocol participant or an (external)
judge. It is worth noting that our results demonstrate that,
for re-encryption RPC mix nets, every party (also external
observers) can play the role of the judge, who needs to
examine publicly available information only.

Informally speaking, accountability requires two condi-
tions to be satisfied: i) J (almost) never blames protocol
participants who are honest, i.e., run their honest program
(fairness); ii) if, in a run, the desired goal v of the protocol
is not met—due to the misbehavior of one or more protocol
participants—then J should blame those participants who
misbehaved, or at least some of them individually, where
the probability that the desired goal is not achieved but J
nevertheless does not blame misbehaving parties should be
bounded by A (completeness).

This general definition of accountability is instantiated in
[14] for Chaumian RPC mix nets, by fixing the specific goal
~ and the parties who should be blamed if y is not achieved.
We now provide a similar instantiation for re-encryption RPC
mix nets.

The goal. As far as accountability (also verifiability) is
concerned, we expect from a re-encryption RPC mix net that
the output corresponds to the input, i.e., the plaintexts in the
input ciphertexts and the plaintexts in the output of the mix
net should be the same (as multisets). This, however, can be
guaranteed only for input coming from honest senders. Dis-
honest senders, for example, might provide invalid NIZKPs of
knowledge of the plaintexts, and hence, such input would be
dropped during input validation. Below, we formally define
this goal as a set of runs . Moreover, we generalize this
goal by considering a family of goals ~;, for k > 0, where
v is achieved if the output corresponds to the input up
to k changed entries. In other words, for the goal v, we
tolerate up to k manipulations. This is useful for the study
of re-encryption RPC mix nets because, due to the nature
of random partial checking, changing a small number of
entries can go unnoticed with some probability. However, this
probability should decrease very quickly with an increasing
number k of manipulated entries.

To formally specify the goal -y, we consider a run r of
an instance 7 of Ppix(n,m,) (with n senders). Let sq,...,s
(for I < n) be those senders that are honest in r (recall
the definition of honest agents in a run from Section 2.2),
X =x1,...,x; be the plaintext inputs of these senders in r
(chosen according to w), and ¥ =y1,...,y, (with p <n) be
the output of the mix net in r (if any), i.e., the sequence of
plaintexts output by the mix net after the decryption phase.
We define r to belong to ~ (in other words, -, is achieved in
r), if there exists a subsequence X' of X of size [—k such that
X, treated as a multiset, is contained in ¥ (again, treated as a
multiset), i.e., for each element a of ¥, the number of a’s in
¥ is less than or equal to the number of a’s in ¥. Hence, we
require the output to contain / — k elements from the honest
input, while the remaining plaintexts, up to n— (I — k), can
be provided by the adversary. If in r no final output was
produced (because, for example, the process was stopped
because a mix server refused to produce output), then r does
not belong to 7, i.e., r does not achieve ;.

Parties to be blamed. We require that, in a run r, if the
goal v, is not achieved (r ¢), then the judge should blame
at least one mix server, i.e., post dis(M;) for at least one
i in r. This requirement also implies that a sender cannot
break the goal ~;: if 7 is not achieved, this must be due to a
misbehaving mix server. This is important for the robustness
of the mix net, as otherwise dishonest senders could spoil
the mixing process.

5. Our proof of accountability shows that accountability holds true even
for a slightly stronger goal, which says that all (but k) entries that made it
through the input validation phase, have to make it to the output of the mix
net. One can observe, using the cryptographic properties of the primitives,
that honest entries will (except with negligible probability) always make
it through the input validation. For Chaumian RPC mix nets this stronger
goal cannot be achieved.

In the following formal definition of accountability for
mix nets, we say that, if the judge posts dis(a), for some agent
a, then the judge stated the verdict dis(a). Moreover, given
an instance 7 of a protocol P, we say that a verdict dis(a)
is true in 7 if and only if a is not honest in 7 (in the sense
of Section 2.2). We write Prlw(ﬁ) — J : dis(a)] to denote the
probability that in a run of 7 0 the judge J states the verdict
dis(a). We write Pr[7(9) — = A—(J : dis(M;) for some i)]
to denote the probability that in a run of 7(©) the goal ~ is not
satisfied, i.e., the run does not belong to -y, and nevertheless
J does not state a verdict dis(M;) for any i. Both probabilities
are taken over the runs of 71([), i.e., the random coins used
by the agents in 7.

Definition 1. (Accountability for RPC mix nets) Let P =
Bnix(n,m, 1) be a re-encryption RPC mix net protocol with
an agent J (the judge), \ € [0,1], and k > 0. We say that P
provides A-accountability with tolerance k (and w.r.t. J), if
the following two conditions are satisfied.

(i) (Fairness) For all instances © of P and all verdicts
dis(a) which are not true in ., the probability Pr[x(®) —
J :dis(a)] is a negligible function in ¢.

(ii) (Completeness) For every instance m of P, the prob-
ability Pr[n®) — =~ A= (J - dis(M;) for some i)] is a
A-bounded function in (.

The above definition requires that the judge never (more pre-
cisely, only with negligible probability) blames mix servers
that behave honestly, i.e., run their honest program. It also
requires that the probability that the goal ~; is not satisfied,
and hence, more than k inputs of honest senders have been
manipulated or no output was produced by the mix net,
but the judge nevertheless does not blame any single mix
server, is bounded by A. We will see that for re-encryption
RPC mix nets (the optimal/minimal) A will be bigger than 0.
This is unavoidable because of the nature of random partial
checking, some misbehavior might go unnoticed with some
non-negligible probability. One of the important contributions
of this work is to determine the optimal A, and hence,
precisely measure the level of accountability re-encryption
RPC mix nets provide.

Verifiability. Accountability is a stronger property than
verifiability and subsumes it [12]: While for verifiability one
requires protocol participants only to be able to see whether
something went wrong or not, accountability additionally
demands that, if something went wrong, it is possible to
blame specific misbehaving parties. Accountability therefore
provides a strong incentive for parties (mix servers in our
case) to carry out correct computations, which is of high
practical importance. This cannot be said for verifiability
alone. Accountability, as we will see, is a fundamental re-
quirement that justifies the notion of risk-avoiding adversaries
(see Section 5).

G G Gy
o---Q O
%g\/o
®@ © O
O 0/ 0
O O O

Figure 2. Example attack on accountability detected only with probability
%. Both gray nodes in the middle colum are re-encryptionis of the same
ciphertext in the left one. The ciphertext represented by the black node is
dropped.

4. Analysis of Accountability of Re-Encryption
RPC Mix Nets

In this section, we provide formal results for the level of
accountability (and hence, verifiability) re-encryption RPC
mix nets provide. This is the first rigorous analysis of
accountability/verifiability for re-encryption RPC mix nets in
the literature. The level of accountability is reasonably high
and provides a strong deterrent for potentially malicious mix
servers.

We start, in Section 4.1, with a description of some
attacks on the accountability/verifiability of re-encryption
RPC mix nets. We then present our formal results, which
show that these mix nets have a good level of accountabil-
ity/verifiability. In particular, they show that there are no
worse attacks than those described in Section 4.1.

4.1. Attacks

The most obvious way in which a mix server can
cheat is when, instead of performing re-encryption, the mix
server replaces an input ciphertext by an arbitrary other
ciphertext, possibly without preserving the plaintext. This
kind of cheating is (not) detected with probability % and if
the mix server cheats in this way for k4 1 input ciphertexts of
honest senders at the same time (and hence, violates 7y), its
probability of not being caught is (%)Hl. There are, however,
more subtle ways of cheating which result in dishonest mix
servers being caught less likely (see [10]). For example,
in the attack illustrated in Figure 2 a dishonest mix server
M;, for two positions p and ¢ in its intermediate sequence
Cyj4+1 of ciphertexts, sets both Cj41[p] and C2j41[g] to be
re-encryptions of the same entry Cy;[m;(p)] (an honest M;
would set Crj11]g] to be a re-encryption of Csj[m;(g))).
Moreover, in its first sequence of commitments, both at
positions p and ¢ it commits to the value m;(p) (an honest
M; would at position g commit to m;(g)). As a result of
this manipulation, one of the entries from C;; is dropped
(the black node in the example) and substituted by another
one (the gray entry). This attack can be detected only with
probability %, because detection requires that both p and g are
audited to the left, i.e., both p and g belong to /;. Performing
the attack on k+ 1 different pairs of ciphertexts (by the same

mix server or different mix servers) results in the ViOIa/EiOf]
. . . . +
of 7 and this remains undetected with probability (%)

4.2. Formal Analysis of Accountability

We now state and prove the precise level of account-
ability/verifiability re-encryption RPC mix nets have. While
from the above it is clear that the probability of more than
k manipulations of honest entries (violation of ~;) going
unnoticed may be (%)’”’1, we prove that this probability is
not higher, and hence, there are no worse attacks.

Security assumptions. Recall that we assume that the
scheduler, the judge, the auditor, and the bulletin board are
honest. However, none of the mix servers nor the senders are
assumed to be honest. The assumptions about the primitives
used in a re-encryption RPC mix nets have already been sum-
marized in Section 2.1. However, for accountability, weaker
assumptions are sufficient. It suffices if the commitment
scheme is computationally binding. The distributed public-
key encryption does not have to be IND-CPA secure, but has
to guarantee that encrypting the same message twice yields
different ciphertexts with overwhelming probability (this is
implied by IND-CPA security). The non-interactive proofs
do not have to be zero-knowledge.

Now, the following theorem holds true for re-encryption RPC
mix nets, independently of whether auditing is done before
or after decryption.

Theorem 1. Let P = Byx(n,m,) be a re-encryption RPC
mix net. Then, under the above security assumptions, P pro-
vides Ai-accountability with tolerance k, where A\ = (%)kH;
P does not provide \-accountability for any \ < Xy, i.e., A

is optimal.

This theorem implies that even if all mix servers are dishonest,
the probability that more than k inputs of honest voters have
been manipulated, but the judge nevertheless does not blame

any mix server, is bounded by (%)Hl. For example, the
probability that more than 10 manipulations go undetected is
less than 4.5%. Moreover, if manipulation is detected, at least
one mix server is blamed (and rightly so) for its misbehavior.

As already mentioned in the introduction, this result in
particular shows that re-encryption RPC mix nets have the
same (good) level of accountability as Chaumian RPC mix
nets. The (highly non-trivial) proof of Theorem 1, which is
provided in our technical report [1], follows a similar line
of reasoning as the one for Chaumian RPC mix nets [14].
However, due to the different structures and cryptographic
primitives (re-encryption and distributed decryption instead
of just nested encryption) used, the proofs differ in the details.

5. Risk-Avoiding and Essentially Semi-Honest
Adversaries

As observed in [10], and partly already in [18], in the
general case, that is, for arbitrary probabilistic polynomial-
time adversaries, there are attacks on the privacy of votes for

re-encryption RPC mix nets, which allow the adversary to
see how one or more voters voted. These attacks use homo-
morphic properties of the encryption scheme and generate
collisions (links that point to the same entry) as illustrated in
Figure 2. In all these attacks, the adversary, however, risks
to be caught cheating with a probability of at least 1/4. As
mentioned before, this risk of being caught should deter mix
servers from dishonest behavior in many real-life applications
(elections), as mix servers that are caught cheating would face
severe penalties and, maybe just as deterrent, lose reputation.

As already mentioned in the introduction, this motivates
us to consider “risk-avoiding” adversaries. Such adversaries
were first introduced in [14]. We recall the definition of
risk-avoiding adversaries below.

The concept of risk-avoiding adversaries is, however, not
sufficient for the privacy analysis of re-encryption RPC mix
nets. We rather need an additional important notion, namely
essentially semi-honest adversaries. Below we formally intro-
duce this new class of adversaries and show that whenever
an adversaries deviates from the essentially semi-honest
behavior, then he knows that he will be caught cheating
with high probability. From this we obtain that risk-avoiding
and essentially semi-honest adversaries are tightly connected,
which in turn is an important tool to prove that re-encryption
RPC mix nets provide a reasonable level of privacy for risk-
avoiding adversaries (see Section 7).

We believe that the new notion of essentially semi-honest
behavior and its connection to risk-avoiding adversaries might
be relevant beyond the particular application to re-encryption
RPC mix nets.

Essentially semi-honest adversaries. One key observation
is that if an adversary does not follow the protocol in an
essentially semi-honest way (as defined next), then he will
always be caught with a probability of at least 1/4, where,
as before, for a given instance 7 of Byiy(n,m, 1) or a run of
this instance, the adversary is the set of all dishonest agents
(in the sense defined in Section 2.2) in .

Intuitively, we say that a mix server behaves essentially
semi-honestly in a run r, if the server does not deviate from
the protocol in crucial aspects in r. Most importantly, an
essentially semi-honest mix server shuffles and re-encrypts
its input as expected, i.e., input ciphertexts are re-encrypted
and there exists a permutation such that the re-encrypted
ciphertexts are shuffled according to this permutation. Now,
an adversary is called essentially semi-honest in a run r,
if every dishonest mix server (all of them are part of the
adversary) behaves essentially semi-honestly in this run.
Below, we provide a formal definition of essentially semi-
honest behavior.

Let 7 be an instance of the protocol Ryix(n,m,). Let us
recall that an instance is a combination of programs of all
parties, including potentially dishonest ones (the adversary).
Let r be a run of 7.

Now, we say that the j-th mix server behaves essentially
semi-honestly in the run r, if this mix server produces
correct output in the setup phase, the mixing phase, and
the decryption phase, that is:

(a) M; outputs its public key share along with a valid NIZK
proof of knowledge of the private key share, where “valid
proof” (here and below) means that the proof is accepted
by the judge in r (see the auditing phase described in
Section 2.1).

(b) If M; obtains a valid input C,; (consisting of valid
ciphertexts), then M ; outputs C2j11 and Cyj42 such that
the sequences Cyj, C2j11, and Cj4» all have the same
length /. Moreover, M; outputs two sequences of com-
mitments to [values each. If M; is audited M; provides
valid non-interactive proofs of correct re-encryption and
provides valid openings to the commitments that need
to be opened without collisions. In other words, in the
mixing phase in run r, M; produces output that the judge
approves.

(c) If M; obtains a valid input sequence C,; of length /
(consisting of valid ciphertexts), then M; outputs Csj 1
and Cyj4o such that there exist permutations m; and
mj+1 on the set {1,...,/} such that Cyj,[i] is a re-
encryption of Cy;[m;(i)] and Cj45[i] is a re-encryption
of Cojyi[maju1(i)].

(d) In the decryption phase, for every ciphertext m to be
decrypted, M; outputs a decryption share % for this
ciphertext and the (common) public key, along with a
valid NIZKP of correctness of the decryption share.

We say that an adversary behaves essentially semi-honestly

in a run, if every dishonest mix server (which is controlled

by the adversary) behaves essentially semi-honestly in this
run; honest mix servers obviously behave essentially semi-
honestly. For simplicity, in what follows we simply refer
to essentially semi-honest adversaries as semi-honest adver-
saries.

Now, the following lemma shows that under any cir-
cumstances not being semi-honest is always risky. For an
instance 1) of Pyiy(n,m, ;) with security parameter ¢, let

Bg-@ denote the set of runs of 7() (an event) where M jis

blamed by the judge and let NSHJ(O be the set of runs of

) where M ; does not behave semi-honestly. We say that
a family G = {G"'}, of events is overwhelming if Pr[G(")]
is an overwhelming function in 4.

Lemma 1. There exists an overwhelming family G such that,
for all £ >0, we have that Pr [B;ﬁ) |NSHJ(-Z) ﬁG([)] > % if

Pr [NSH}“ nGO| >o.

The interpretation of Lemma 1 is as follows: except for
some negligible set of runs, whenever M; decides to not
shuffle and re-encrypt the ciphertexts in the expected way,
then (he knows that) in the audit phase he will be caught
with a probability of at least 1/4. In other words, there is
no way for M; to outsmart the system by not performing
the expected task but getting caught with probably < 1/4. In
our technical report [1], we present a lemma which implies
Lemma 1 and makes this point even more explicit.
Therefore, if for an adversary (which includes all dishon-
est mix servers) the risk of being caught, and hence, the risk

of facing severe penalties and loss of reputation, is too high,
such a “risk avoiding” adversary would behave semi-honestly,
i.e., would not deviate from the expected behavior. Of course,
a mix server could flip a coin in order to decide whether to
behave semi-honestly or not in certain stages of the run. This
would bring the overall risk of being caught down, but only
in a very artificial way. Indeed, for an adversary that decided
not to take the (high) risk of being caught in the first place,
such a behavior appears very unreasonable. If the coin flip
made him behave in a non semi-honest way, he knows that he
then will be caught with high probability, a risk the adversary
wanted to avoid. Hence, it seems reasonable to assume that
an adversary for whom the risk of being caught once he
deviates from semi-honest behavior is too high (and this risk
is always at least 1/4), should never decide to deviate from
the semi-honest behavior. Thus, it is reasonable to expect that
such an adversary behaves semi-honestly with overwhelming
probability. We will now see that this class of adversaries
coincides with the class of risk-avoiding adversaries.

Risk-avoiding adversaries. For an instance 7w of
Prnix(n,m, 1), we say that the adversary in 7 (consisting of all
dishonest parties in 7) is risk-avoiding in , if the probability
that 7 produces a run where the judge blames a dishonest
party is negligible as a function in the security parameter /.
This class of adversaries was introduced in [14]. We now
link this notion to semi-honest behavior.

Note that, in general, risk-avoiding adversaries do not
need to behave semi-honestly: if in a protocol misbehavior
goes unnoticed (because there are no, or insufficient, detec-
tion mechanisms), then an adversary can freely depart from
the protocol and still never get blamed. For re-encryption
RPC mix nets, however, by Lemma 1, we show that risk-
avoiding adversaries are forced to behave semi-honestly:

Lemma 2. The adversary in 7 is risk-avoiding if and only
if the set of runs of m in which he behaves semi-honestly has
overwhelming probability.

In the proof of the privacy result (see Section 7), we
will also use the following, technical result which takes the
statement of Lemma 2 one step further: while Lemma 2
guarantees that a risk-avoiding adversary is semi-honest, and
hence, shuffles and re-encrypts in every mixing step, the
following result states in addition that, when such a system is
simulated, suitable permutations can be extracted, by means
of rewinding, by the simulator (see our technical report [1]
for the proof).

Lemma 3. Let w be an instance of Rpy(n,m,p) such that
the adversary in 7 is risk-avoiding. There exists a simulator
T which faithfully® simulates T and additionally outputs (on
some distinct tape) permutations T,...7, | such that in
an overwhelming set of runs, for each mix server M;, the
permutations j,ﬂ'é i1 satisfy Condition (c) of semi-honest
runs, by which we mean that the properties stated for m;

6. i.e., the simulated runs of 7 are exactly the same as the runs of the
original system 7r; note that the adversary (who subsumes all dishonest
parties in 7r) is simulated in a black-box manner, while the honest parties
in 7 are explicitly given.

. .. . / /
and T2j+1 in Condition (c) are satisfied for ey and Tt
respectively.

6. Definition of Privacy for RPC Mix Nets

As already mentioned in the introduction, we use a
definition of privacy which has been used in the context
of e-voting before (see, e.g., [13]) and which has also been
employed for the analysis of Chaumian RPC mix nets in
[14].

As opposed to (very strong) simulation-based definitions,
see, for instance, [9] and a related game-based definition in
[3], the above mentioned definition allows one to measure the
level of privacy a protocol provides. The ability to measure
the level of privacy is absolutely essential in the context of
RPC mix nets, because such protocols do not achieve perfect
privacy: it is in the very nature of these protocols that the
adversary can learn some information from a protocol run.
Therefore, it is essential to be able to precisely tell how much
he can actually learn.

More specifically, in the context of e-voting, the privacy
definition we adopt formalizes the inability of an observer
to distinguish whether some voter v (called the voter under
observation) voted for candidate j or candidate j/, when
running her honest voting program. Applied to RPC mix
nets, we formalize privacy as the inability of an adversary to
distinguish whether some sender under observation submitted
plaintexts p or p/, when running her honest program.

~For studying privacy, we consider the protocol
Pniix(n,m,u), which coincides with Py (n,m,) but where
the j-th mix server is assumed to be honest, all other mix
servers may be dishonest. Among the n senders, we consider
one sender s to be under observation. (The task of the
adversary is to figure out whether this sender sent plaintext
porpl)

Now, given a sender s and a plaintext p, the proto-
col P! (n,m,;u) induces a set of instances of the form
(7s(pTH 7*) where #5(p) is the honest program of the sender
s under observation that takes p as its unencrypted input
and 7* is the composition of programs of the remaining
parties (scheduler, auditor, judge, senders, mix servers), one
program 7 € II, for each party a. Recall that the honest
voters in 7* vote according to the probability distribution u.
Also recall that according to the definition of P (n,m, p),
if a is the scheduler, the auditor, the judge, or the j-th mix
server, then I1, contains the honest program of that party
only, as they are assumed to be honest. All other parties
are potentially dishonest and may run arbitrary (adversarial)
probabilistic polynomial-time programs. For such general
adversaries who do not avoid accusations by the judge,
privacy of re-encryption RPC mix nets cannot be guaranteed,
as demonstrated by the attacks in [10], [18]. In order to define
privacy w.r.t. risk-avoiding adversaries, we simply restrict
the set of programs 7* to those that are risk-avoiding (see
Section 5). In a system (#s(p) || 7*) with a sender s under
observation, 7* is required to be risk avoiding for all choices
of the plaintexts p in the considered space of plaintexts.

Privacy for re-encryption RPC mix nets is now defined
as follows, where we use the following notation: Pr(#s(p) ||
w*)(é) — 1] denotes the probability that the adversary (i.e.,
some dishonest agent) writes the output 1 on some dedicated
channel in a run of #¢(p) || 7* with security parameter ¢ and
some plaintext p. The probability is over the random coins
used by the agents in #5(p) || 7*.

Definition 2. For Pnﬁlx(n m,) as before let s be the
sender under observation, | <n—1, and 6 € [0,1]. We say
that Pmlx(n,m,u) with [honest senders achieves d-privacy
(w.r.t. risk-avoiding adversaries), if

Pri(s(p) | 7)) = 1] =Pr((&s(p) | 7)1V = 1] (1)

is 0-bounded as a function of the security parameter ¥, for all
valid input plaintexts p,p’ and all (risk-avoiding) programs

* of the remaining parties such that (at least) | senders are
honest in 7.

Since § typically depends on the number / of honest senders,
privacy is formulated w.r.t. this number. Note that a smaller
0 means a higher level of privacy. However, ¢ cannot be 0,
not even in an ideal protocol, as detailed in the following
subsection: there is, for example, a non-negligible chance
that all honest senders sent the same message. In this case,
the adversary knows the message sender s has sent, and
hence, can easily determine whether s sent p or p'.

Privacy for the Ideal Mix Net Protocol. Before we state
the level of privacy provided by re-encrypted RPC mix nets,
we first briefly recall results for the ideal mix net from [14],
where the optimal 5"1“ is determined in this case. The level
of privacy for re-encryption RPC mix nets can be expressed
in terms of this value (see Section 7).

In the ideal mix net, the senders submit their input
plaintexts on a direct channel to the ideal mix net. The ideal
mix net then immediately outputs the submitted messages
after having applied a random permutation. Honest senders
choose their inputs according to the distribution .

The level of privacy provided by the ideal mix net
depends on the number / of honest senders and the probability
distribution g on valid input plaintexts. To define (5"’ we
need the following terminology. Let {pi,...,pr} be the set
of valid plaintexts. Since the adversary knows the input
plaintexts of the dishonest senders, he can simply filter out
these plaintexts from the final output and obtain the so-
called pure output ¥ = (ry,...,r;) of the protocol, where
ri, i € {1,...,k}, is the number of times the plaintext p;
occurs in the output after having filtered out the dishonest
inputs. Note that, if / is the number of honest senders, then
ri+---+ry =141 (I honest senders plus the sender under
observation).

We denote by Out the set of all pure outputs. Let A;
denote the probability that the choices made by the honest
senders yield the pure output 7, given that the sender under
observation submits p;. Further, let M; y = {7 € Out : A/

A’ }. Now, the intuition behind the deﬁnltlon of 5’d is as
follows If the observer, given a pure output 7, wants to
decide whether the observed sender submitted p; or pj, the

B8 2 valid input plaintexts, ideal
B 2 valid input plaintexts, &, (Th.2)
01 3 valid input plaintexts, ideal
00 3 valid input plaintexts, 01 (Th.2)
BB 5 valid input plaintexts, ideal
005 valid input plaintexts, d;,, (Th.2)

privacy level (3)

5 10 20 50 100 200 500
number of honest voters (without the observed voter)

Figure 3. Level of privacy (&;,,) for P, (n m,) w.rt risk-avoiding

mix
adversaries and in the ideal case 6’d uniform distribution of input plaintexts.

These figures have been obtained gy straightforward calculations using the
o-formulas as provided in the theorems. For non-uniform distributions, J; ,,
is close to ideal as well.

best strategy of the observer is to opt for p; if 7 € M; ;. This
leads to the following level of privacy provided by the ideal
mix net protocol with / honest senders and the probability

distribution f: 5"’ =max; je(i,. k}):,GM ,(- Aj) with

example values depicted in Figure 3. (Note that A’ A%
depends on [and p.)

7. Analysis of Privacy of Re-Encryption RPC
Mix Nets

We now provide the formal analysis of the level of privacy
re-encryption RPC mix nets provide in the case of a risk-
avoiding adversary. We note that in our analysis of privacy,
we assume merely that one of the mix servers is honest;
clearly, if all mix servers are dishonest there cannot be any
privacy.

For the following result, our cryptographic assumptions
are as described in Section 2.1. The result holds true inde-
pendently of whether auditing of the mix servers is done
before or after the decryption phase.

Theorem 2. The protocol Pmlx(n,m,) with [honest senders

achieves 0y ,,-privacy w.r.t. risk-avoiding adversaries, where

s = Loy (1) s
L= 51" Z i) e
i=0
Moreover, 6, is optimal, i.e., this protocol does not achieve
d-privacy w.rt. risk-avoiding adversaries for any 0 < 0y ,.

Example values for d;, are depicted in Figure 3. As can
be seen, for risk-avoiding adversaries, the level of privacy
provided by re-encryption RPC mix nets is only slightly
worse than the level of privacy in the ideal mix net, even
though only one honest mix server is assumed to be honest.

As mentioned before, the assumption that adversaries
are risk-avoiding is necessary because otherwise privacy
could be broken, as the attacks by Khazaei and Wikstrom
on re-encryption RPC mix nets illustrate [10]. However, as

we show in Lemma 2, being risk-avoiding is equivalent
to behaving semi-honestly, and by Lemma 1, it follows
that if an adversary deviates from semi-honest behavior, he
(knows that he) will be caught cheating with high probability.
So, altogether our results say that risk-avoiding adversaries
cannot break privacy and those adversaries who (attempt
to) break privacy will be caught with high probability. We
note that while this provides a reasonable level of privacy,
Chaumian RPC mix nets provide close to ideal privacy even
for general polynomial-time adversaries, as was shown in
[14].

We note that the proofs of privacy for re-encryption
RPC mix nets on the one hand and Chaumian RPC mix
nets on the other hand differ substantially as well: The
main reason for this difference is that the encryption scheme
used in re-encryption mix nets allow for re-encryption, and
hence, merely provide IND-CPA-security (as opposed to
IND-CCAZ2-security in the case of Chaumian mix nets); this
is also the main reason for the weaker level of privacy.
Consequently, we need the new machinery introduced in
Section 5, in particular the notion of essentially semi-honest
behavior and its connection to risk-avoiding adversaries, and
the assumption that the adversary is risk-avoiding to establish
the privacy result. On the technical level, when it comes to
carrying out the reduction in the privacy proof, one cannot
simply use idealized encryption and decryption oracle queries
to simulate the decryption step performed by the mix net as
done in [14]. Instead, the plaintexts have to be extracted from
the input of the mix net and carefully traced throughout the
(partially dishonest) mixing process. Note also that, unlike
Chaumian RPC mix nets, re-encryption RPC mix nets use
distributed decryption.

7.1. Proof of Theorem 2

Let us consider an instance of the system P’ (n,m, 1)
with [honest senders (where, by the definition of Pniix the
Jj-th mix server is honest). We will represent such an instance
as A || P, where P represents all the honest programs, while
the dishonest parties are represented by A, the risk-avoiding
adversary. We have to show that for all valid input plaintexts

p and p’, we have that
IPri(A || P(p))!) = 1] =Pr[(A || P(p'))!) = 1]]

is a 0 ,-bounded function in the security parameter £, where
P(p) means that the sender under observation uses p as its
plaintext. We denote this function by Adv)’, (¢) and call
it the advantage of A. o

We first define what we call audit groups for an over-
whelming set of runs.

Consider a run of the instance A || P which is semi-
honest and for which the extractor from Lemma 3 can extract
correct permutations, namely permutations that satisfy (c) in
the definition of semi-honest behavior. This set of runs has
overwhelming probability.

For such a run, we can split the input entries into two
groups: those for which M; opens the left link and those

for which M; opens the right link. More precisely, each
input entry Cpi] is linked to Cyj4i[i'] (an entry in the
middle column of M;) with i = (mjomj_jo---om) (i),
where 7, are permutations extracted from the run,’ (and thus
satisfying condition (c) of semi-honest runs) and o denotes
function composition ((fog)(x) = g(f(x))). Note that, by the
definition (c) of semi-honest runs, Cyj11 [{'] is a re-encryption
of Cyli]. Now, if the auditors request M; to open the left link
for the index 7, then we say that i belongs to the left audit
group I ; otherwise we say that i belongs to the right audit
group Ig.

We further say that [is the audit group of the sender
under observation if the (index of the) entry of this sender
belongs to I;. Similarly for Ir.

From the program A, we derive a program A* in the
following way: A* simulates A and also runs the extractor
from Lemma 3 in order to extract permutations for the mix
servers subsumed by A (as just mentioned, by Lemma 3,
this can be done in such a way that, with overwhelming
probability, for the extracted permutations, Condition (c¢) in
the definition of semi-honest behavior is true). This allows A*
to determine the audit group of the sender under observation
and learn which (encrypted and then later decrypted) output
entries are linked to this group (without knowing specifically
which output entry is linked to which sender in this group).
Let Q denote the multi-set of all the plaintexts (decrypted
entries) linked to this group. For example, if x3 in Figure 1 is
the (re-encrypted) entry of the sender under observation (A*,
knowing the extracted permutations, knows at which position
the entry of the sender under observation is delivered), then
{y1,ya4} are entries of the senders from the audit group of
the sender under observation. This group of entries, given
the extracted permutations, can be easily linked to the output
of the mix net, when they get decrypted and the multi-set Q
is given.

Now, A* accepts the run (outputs 1) if and only if the
following is true: the probability that the choices of |Q| — 1
honest senders (made according to the probability distribu-
tion w) yield Q, given that the sender under observation
chooses p, is bigger than the probability that the choices of
|Q| — 1 honest senders yield Q, given that the sender under
observation chooses p'.

In the following lemma, we write [<,q £, if there exists
a negligible function v(¢) such that f(¢) < f/(£) +v(£) for
all £. Later we also use f =, f' to mean f <, f' and
f" <neg f. The lemma says that the advantage of A is not
bigger than the advantage of A*.

Lemma 4. For a risk-avoiding adversary A and for all valid
p and p', we have that

riv riv
AV <neg AV,

A*Pp,p' *
The proof of this lemma is postponed to Section 7.2.

Now, the proof of Theorem 2 proceeds as follows. By

. priv
Lemma 4, it suffices to prove that Adv A P Zneg O1,pu-
7. Formally, to determine these permutations, one needs to consider the
corresponding run of the system A || P simulated by the simulator from
Lemma 3.

By Lemmas 2 and 3, there is an overwhelming set SHP
of runs of A* || P such that these runs are semi-honest and
such that the permutations A* extracts from the dishonest mix
servers satisfy Condition (c) of semi-honest behavior. For
these runs, the mixing runs through successfully (as the runs
are semi-honest) and the multi-set Q contains the plaintexts
chosen by the senders in the audit group of the sender under
observation (as the permutations satisfy (c)).

By the above, it is easy to see that, the computations
carried out by A* yield the constant from the theorem,
ie., Advﬁi”;p.p, =neg 01,,- Indeed, i in the definition of &,
represents the number of entries of honest senders that are, in
a given run of the system, in the same audit group as the entry
of the sender under observation. We consider all the possible
cases, from i = 0 (the entry of the sender under observation is
alone in its audit group, and hence, the adversary can easily
see her choice) to i = (all the honest entries are in the same
group as the entry of the sender under observation; in this
case, privacy of the sender under observation is maximally
protected). The probability that i honest senders belong to
the same audit group as the sender under observation is (i) %,
as it is decided independently for every honest entry if it
belongs to the audit group of the sender under observation
or not. Moreover, under the condition that the sender under
observation is in an audit group with i honest senders, the
situation corresponds to that of the ideal mix net with i
honest senders. Hence, in this case, the level of privacy is
5,’»'_‘2. Moreover, for the given audit group, A* follows the

best strategy as described for the ideal case (see Section 6).

Therefore, we in fact obtain Advﬁii;p_p, =neg OLp-
Optimality of ¢, is obvious now since if A is the benign
adversary (which in particular is risk-avoiding), we have, by
the above, that Advﬁi”;pﬁp, =eg 01, This concludes the proof
of the theorem. O

7.2. Proof of Lemma 4

The full proof of Lemma 4 is given in our technical
report [1]. The main technical tool used in this proof and in
fact the main technical tool in the proof of Theorem 2 is the
result stated below (Lemma 5). To formulate this result we
need to first introduce some notation.

We can assume w.l.0.g. that the sender under observation
has index 0. We denote by (0 € L) and (0 € R) the events
that the entry of the sender under observation belongs to the
left and the right audit group, respectively, with the notion
of an audit group introduced above. Note that the events
(0 e L) and (0 € R) are the same independently of whether
we consider the system (A || P) or (A* || P) (these systems
diverge only after these events are determined).

Let I}, be a set containing 0 and, possibly, some indices
of honest senders, and Q be a multiset of plaintexts of size
|I.|. We will consider events of the form X = I, N Q, where
I; and Q (by abuse of notation) represent to the following
events:

— I, denotes the set of all runs of (A || P) (and analogously
for (A* || P)) where the set of indices of honest senders

that are in the left audit group, including the sender under
observation, is I;,. Note that I; C (0 € L).

— Q represents the set of all runs of (A || P) (and analogously
for (A* || P)) where the multiset of plaintexts chosen by
the senders in I, is Q.

Note again that the events X, Iy, and Q, are the same

independently of whether we consider the system A || P or

the system A* || P (the systems A and A* diverge only when
all those events have already been determined).

Let us observe that the event Q determines possible
vectors zp,...z- of plaintext input messages of senders in
I, (which includes the sender under observation), that yield
Q. Note that the length of each z; is |Ir| = |Q| (where |Q] is
the number of elements in the multi-set Q). We will denote
the collection of these vectors by Zp. More precisely, Zg
contains only those vectors which have a probably bigger than
0 according to the probability distribution y that we consider.
By abuse of notation, each z € Zp may be interpreted as the
event containing all the runs where the senders in I;, chose
their plaintexts according to the vector z. Again, the event z
is defined independently of whether we consider the system
A || P or the system A* || P.

Now, roughly speaking, the following key lemma says
that the adversary cannot distinguish between two vectors of
choices (which are permutations of each other) of senders
that belong to the same audit group.

Lemma 5. For each zp,z1 € Zg, we have that
Pri(A[| P—1),X | z0] =neg Pr{(A[| P—=1),X |z1]. (2)

The proof of this lemma is given in Appendix A. This proof is
constructed as a sequence of games where we use the security
properties of the used NIZK proofs, the CPA property of the
used encryption scheme, and the semantic security of the
used encryption scheme under re-encryption.

8. Conclusion

In this paper, we carried out the first formal cryptographic
analysis of re-encryption RPC mix nets, which are one of
or even the most deployed mix nets in real elections so far.
We proved that re-encryption RPC mix nets enjoy a good
level of accountability and verifiability: manipulation of just
a few (honest) entries is detected with quite high probability
a- (%)k for k manipulations), even if all mix servers are
dishonest. Importantly, if manipulation is detected, specific
misbehaving servers can (rightly) be blamed. Moreover, we
introduced the notion of essentially semi-honest behavior and
showed that if an adversary does not follow the protocol in
an essentially semi-honest way, then he (knows that he) will
be caught with a probability of at least 1/4. In particular,
this implied that risk-avoiding adversaries would behave
essentially semi-honestly. With this, we showed that for risk-
avoiding adversaries re-encryption RPC mix nets provide a
good level of privacy, even if only one mix server is honest.
Altogether, our work, for the first time, precisely states the
security guarantees (accountability/verifiability and privacy)
these prominent mix nets provide.

Acknowledgment. This work was partially supported by
Deutsche Forschungsgemeinschaft (DFG) under Grant KU
1434/6-3 within the priority programme 1496 ‘Reliably
Secure Software Systems — RS3”.

References

[1] Ralf Kiisters and Tomasz Truderung. Security Analysis of Re-
Encryption RPC Mix Nets. Technical Report 2015/295, Cryptology
ePrint Archive, 2015. Available at http://eprint.iacr.org/2015/295.

[2] Stephanie Bayer and Jens Groth. Efficient Zero-Knowledge Argument
for Correctness of a Shuffle. In David Pointcheval and Thomas
Johansson, editors, Advances in Cryptology - EUROCRYPT 2012 - 31st
Annual International Conference on the Theory and Applications of
Cryptographic Techniques, volume 7237 of Lecture Notes in Computer
Science, pages 263-280. Springer, 2012.

[3] David Bernhard, Olivier Pereira, and Bogdan Warinschi. How Not to
Prove Yourself: Pitfalls of the Fiat-Shamir Heuristic and Applications
to Helios. In Xiaoyun Wang and Kazue Sako, editors, Advances in
Cryptology - ASIACRYPT 2012 - 18th International Conference on
the Theory and Application of Cryptology and Information Security,
Proceedings, volume 7658 of Lecture Notes in Computer Science,
pages 626—643. Springer, 2012.

[4] R. Carback, D. Chaum, J. Clark, adn J. Conway, E. Essex, P.S.
Herrnson, T. Mayberry, S. Popoveniuc, R. L. Rivest, E. Shen, A. T.
Sherman, and P.L. Vora. Scantegrity II Municipal Election at Takoma
Park: The First E2E Binding governmental Elecion with Ballot
Privacy. In USENIX Security Symposium/ACCURATE Electronic
Voting Technology (USENIX 2010). USENIX Association, 2010.

[5] M. R. Clarkson, S. Chong, and A. C. Myers. Civitas: Toward a Secure
Voting System. In 2008 IEEE Symposium on Security and Privacy
(S&P 2008), pages 354-368. IEEE Computer Society, 2008.

[6] Chris Culnane, Peter Y. A. Ryan, Steve Schneider, and Vanessa Teague.
vVote: a Verifiable Voting System (DRAFT). CoRR, abs/1404.6822,
2014. Available at http://arxiv.org/abs/1404.6822.

[7]1 Philippe Golle, Sheng Zhong, Dan Boneh, Markus Jakobsson, and
Ari Juels. Optimistic Mixing for Exit-Polls. In Yuliang Zheng, editor,
Advances in Cryptology - ASIACRYPT 2002, 8th International Con-
ference on the Theory and Application of Cryptology and Information
Security, Proceedings, volume 2501 of Lecture Notes in Computer
Science, pages 451-465. Springer, 2002.

[8] M. Jakobsson, A. Juels, and R. L. Rivest. Making Mix Nets Robust
for Electronic Voting by Randomized Partial Checking. In USENIX
Security Symposium, pages 339-353, 2002.

[9] Shahram Khazaei, Tal Moran, and Douglas Wikstrom. A Mix-Net
from Any CCA2 Secure Cryptosystem. In Xiaoyun Wang and Kazue
Sako, editors, Advances in Cryptology - ASIACRYPT 2012 - 18th
International Conference on the Theory and Application of Cryptology
and Information Security, Proceedings, volume 7658 of Lecture Notes
in Computer Science, pages 607-625. Springer, 2012.

[10] Shahram Khazaei and Douglas Wikstrom. Randomized Partial Check-
ing Revisited. In Ed Dawson, editor, Topics in Cryptology - CI-
RSA 2013 - The Cryptographers’ Track at the RSA Conference 2013.
Proceedings, volume 7779 of Lecture Notes in Computer Science,
pages 115-128. Springer, 2013.

[11] R. Kiisters. Simulation-Based Security with Inexhaustible Interactive
Turing Machines. In Proceedings of the 19th IEEE Computer
Security Foundations Workshop (CSFW-19 2006), pages 309-320.
IEEE Computer Society, 2006. See http://eprint.iacr.org/2013/025/ for
a full and revised version.

[12] Ralf Kiisters, Tomasz Truderung, and Andreas Vogt. Accountability:
Definition and Relationship to Verifiability. In Proceedings of the 17th
ACM Conference on Computer and Communications Security (CCS
2010), pages 526-535. ACM, 2010.

[13] Ralf Kiisters, Tomasz Truderung, and Andreas Vogt. Verifiability,
Privacy, and Coercion-Resistance: New Insights from a Case Study.
In 32nd IEEE Symposium on Security and Privacy (S&P 2011), pages
538-553. IEEE Computer Society, 2011.

[14] Ralf Kiisters, Tomasz Truderung, and Andreas Vogt. Formal Analysis
of Chaumian Mix Nets with Randomized Partial Checking. In 35th
IEEE Symposium on Security and Privacy (S&P 2014), pages 343-358.
IEEE Computer Society, 2014.

[15] Ralf Kiisters and Max Tuengerthal. The IITM Model: a Simple and
Expressive Model for Universal Composability. Technical Report
2013/025, Cryptology ePrint Archive, 2013. Available at http://eprint.
iacr.org/2013/025.

[16] C. Andrew Neff. A verifiable secret shuffle and its application to
e-voting. In Michael K. Reiter and Pierangela Samarati, editors, 8th
ACM Conference on Computer and Communications Security (CCS
2001), pages 116-125. ACM, 2001.

[17] Torben P. Pedersen. Non-interactive and information-theoretic secure
verifiable secret sharing. In Proceedings of the 11th Annual Interna-
tional Cryptology Conference (CRYPTO 1991), volume 576 of Lecture
Notes in Computer Science, pages 129-140. Springer, 1991.

[18] Birgit Pfitzmann. Breaking Efficient Anonymous Channel. In
Alfredo De Santis, editor, Advances in Cryptology - EUROCRYPT 94,
Workshop on the Theory and Application of Cryptographic Techniques,
volume 950 of Lecture Notes in Computer Science, pages 332-340.
Springer, 1994.

[19] Peter Y. A. Ryan, David Bismark, James Heather, Steve Schneider,
and Zhe Xia. The Prét a Voter Verifiable Election System. Technical
report, University of Luxembourg, University of Surrey, 2010. http:
/Iwww.pretavoter.com/publications/PretaVoter2010.pdf.

[20] K. Sako and J. Kilian. Receipt-Free Mix-Type Voting Scheme — A
practical solution to the implementation of a voting booth. In Advances
in Cryptology — EUROCRYPT ’95, International Conference on the
Theory and Application of Cryptographic Techniques, volume 921 of
Lecture Notes in Computer Science, pages 393-403. Springer-Verlag,
1995.

[21] Bjorn Terelius and Douglas Wikstrom. Proofs of Restricted Shuffles.
In Daniel J. Bernstein and Tanja Lange, editors, Progress in Cryptology
- AFRICACRYPT 2010, Third International Conference on Cryptology
in Africa, volume 6055 of Lecture Notes in Computer Science, pages
100-113. Springer, 2010.

[22] Douglas Wikstrom. A Universally Composable Mix-Net. In Moni
Naor, editor, Theory of Cryptography, First Theory of Cryptography
Conference, TCC 2004, Proceedings, volume 2951 of Lecture Notes
in Computer Science, pages 317-335. Springer, 2004.

[23] Douglas Wikstrom. User Manual for the Verificatum Mix-Net Version
1.4.0. Verificatum AB, Stockholm, Sweden, 2013.

Appendix A.
Proof of Lemma 5

We show that for all 29,21 € Zg:
Pri(A || Pr—1),X | z0] =neg Prl(A[| P —1),X [z1]. (3)

Let us first notice that z; subsumes Q. Therefore (3) is
equivalent to

Pri(A|| P 1)1 | z0) =neg Pr{(A || P—= 1)1 | z1]. (4)

Let T be the simulator of A || P, given by Lemma 3, which
extracts, with an overwhelming probability, permutations
7, ..., Tom—1 that satisfy Condition (c) of semi-honest runs.
Note that the permutations of the honest mix server do not

have to be extracted by the simulator; the simulator simply
knowns them, as they are generated using the (simulation of
the) honest mix server program. For convenience, however,
we will also call these permutations extracted. By 7* we will
denote the composition 7, o---omg of all the permutations
extracted in a simulated run (where the operator o denotes
composition of functions ((fog)(x) = g(f(x))).

One can easily see that in the system 7, with an
overwhelming probability (more precisely, for all those runs
where the extraction works correctly), the i-th entry in the
decrypted output of the mix net is the same as the 7*(i)-th
input entry (after the proof check and duplicate elimination).
We will use this fact later.

Now, because the simulation is faithful, for p € {0,1}
we have

Pri(A]| P 1),01 | 2p) = Pr[(T = 1)1 |zp] (5)

where the set of indices [y, is interpreted as an event for the
system 7 in the same way as for the system (A || P).

Let Ty, for i € {0,1}, be defined as the system T, but
with the following differences. First, T,ﬁ uses z, as the
(unencrypted) input of the senders in ;. Second, it outputs
1 if (A || P) outputs 1 and the event I is true in the run
(which can be easily checked by Tlﬁ). It is easy to see that

Pri(T = 1),IL | zp] =neg Pr[T, — 1]. (6)

Simulating NIZKPs and Extracting Let Q,, for p € {0, 1},
be the program works exactly like 7, which includes
simulation of the system A || P, and diverges from the faithful
simulation (as done in 7”) only in the following points. Note
that we must simulate A in a black-box manner, while the
honest component (P) is known and does not need to be
simulated as a black-box.

QI. Instead of using the (honest) setup algorithm to generate
common reference strings oy for NIZKPs of knowledge
of the secret key shares corresponding to the published
public key shares of the dishonest mix servers, Q,
uses (the first component of) an extractor algorithm
(that exists by the computational knowledge extraction
property) to generate oy (which is given to the adversary)
along with a trapdoor 7.

Q2. Instead of using the (honest) setup algorithm to generate
common reference strings o, for NIZKPs of knowl-
edge of the plaintexts to be used by the dishonest
senders (subsumed by the adversary), O, uses (the first
component of) an extractor algorithm (that exists by
the computational knowledge extraction property) to
generate o, (which is given to the adversary) along
with a trapdoor 7.

Q3. Instead of using the (honest) setup algorithm to generate
common reference strings oy, for NIZKPs of knowledge
of the plaintexts to be used by the honest senders in
I, Qp uses a simulator algorithm (that exists by the
computational zero-knowledge property) to generate
these CRSs oy, along with a trapdoor 7, .

These CRSs and the trapdoors are then used to generate
(simulated) NIZKP of knowledge of the plaintexts by
the honest senders in 1.

Q4. Instead of using the (honest) setup algorithm to generate

common reference strings o4 for NIZKPs of correct
decryption share of the honest mix server M;, O, uses
a simulator algorithm (that exists by the computational
zero-knowledge property) to generate o, along with the
trapdoor 74.
These CRSs and the trapdoors are then used by Q) to
generate (simulated) proofs of correct decryption of the
honest mix server (so that the private key is not used
in this step).

By the construction of Q, and by the properties of the interac-
tive zero-knowledge proofs used in the system (computational
zero-knowledge and computational knowledge extraction) we
obtain:

Pr[T,; 1] =peg Pr(Q, — 1], @)

Note that, as is necessary for use of the zero knowledge
property, the system @, only produces simulated proofs
for true statements (honest sender produce ciphertexts of
plaintexts they know and the honest mix server M; produces
a valid decryption share).

Moreover, the permutation 7% computed by Q,, is still
“correct” in that, with an overwhelming probability, the i-th
entry in the decrypted output is the same as the 7*(i)-th
input entry (after the proof check and duplicate elimination),
as otherwise, because this is true for 7 and 77, and can be
easily tested by the simulator, one could easily construct a
distinguisher breaking zero-knowledge or extraction proper-
ties.

CPA Game Simulator. Given zo, z; as above, let S, for
p €{0,1}, be the system that uses a CPA challenger C**°
as an oracle, defined as follows:

S1. S, generates all the common reference strings to be used
in the system in the same way as this is done in the
system Q,, (hence, some of the these CRSs are generated
by simulators / extractors).

S2. S, first calls the encryption oracle C** (|zo| = |z1| times)
to obtain the encrypted input yj, of senders in Iz, that is
encrypted z;, where b is the secret bit used by the oracle
(the CPA challenger). Then, as it was done in Q3, S, uses
the simulator algorithm and the trapdoor 7;, to produce
(simulated) NIZKP of knowledge of the plaintexts for the
obtained vector y;, (without knowing which plaintexts
have been encrypted and without knowing the used
randomness).

S3. It then simulates honest senders not in I} to generate
their unencrypted input X, and then their encrypted input
¥ along with the required ZK proofs (note that “real”
zero knowledge proofs are produced here, using honestly
generated CRSs).

S4. S, gives the encrypted entries produced so far to the
adversary A and simulates A up to the point where it
produces its (dishonest) input ¥,.

S5. With the ciphertexts ¥, , ¥, and ¥4, S, now first performs
the input validation phase of the mix net. As a result,
some entries of the proofs provided by the adversary
might be dropped, because the adversary might have
provided invalid proofs. (Honest senders provide valid
proofs only.) So, we will have a subset of entries from y;.
We denote the new set of entries of the adversary by .
Also, some ciphertexts provided by the adversary might
coincide with those provided by the honest senders, i.e.,
with those in yj,, ¥;. (Since the encryption scheme used
is IND-CPA secure, the probably that their are duplicate
ciphertexts among those provided by the honest senders
is negligible.) So, some more of the ciphertexts in ¥,
might be dropped.®
Hence, the ciphertexts in yj, and y), will all make it to
the actual mixing phase. Only some of the entries in
¥4 might be dropped, and hence, only a subset Y/, may
actually make it to the mixing phase. For simplicity of
notation, we will, instead of referring to these ciphertexts
by ¥, still refer to them by ¥j.

After having simulated the input validation phase, S,
uses the knowledge extractor from Q2 with the trapdoor
T, to extract the vector of plaintexts X; from y;. (Note
that by now all the entries have valid NIZKPs of
knowledge of plaintexts.)

At this point the simulator S, has—up the to choices
of the senders in /;—complete knowledge of the input
of each of the senders (honest and dishonest), except
for the exact order of plaintexts for the honest senders
in I;. The simulator knows that it is 7, or Zj. Let %,
denote the vector of plaintexts consisting of the vectors
Zp, X, and Xy4. Hence, Xp and X differ only at positions
corresponding to the honest senders in ;. The simulator
also knows the corresponding ciphertexts, which we
denote by the vector ¥, consisting of the elements of yj, ,
Yn and yg.

S6. S, then simulates the mixing phase on the input ¥. Doing
this, S, extracts the permutations used by the mix nets
in the same way, as this is done in T and in Q). As
previously, we will denote by 7* the composition of
these permutations.

S7. Finally, S, simulates the decryption process in such a
way that it outputs 7*{X,}, by which we denote the
vector V such that V[i] = X,[7*(i)]. This is the output
vector one would obtain by shuffling X, according to the
extracted permutations used by the mix servers. (Note,
however, that this is not necessarily the “correct” output
vector, as the bit b used by the CPA challenger C**
might not coincide with p.)

To this end, the simulator, using the trapdoor and the
(second component of the) extractor algorithm from QI,

extracts the private keys of the dishonest mix servers.

Then the simulator manipulates the decryption share of

8. Since in the rest of the mix net the NIZKPs in the entries are no longer
used (only the actual ciphertexts are used), it does not matter whether a
ciphertext in ¥, or its duplicate in ¥, or ¥, (if any) is dropped. In any case,
one ciphertext of each set of duplicates will “survive”.

the honest mix server in the following way. Using the pri-

vate keys of all the dishonest mix server and the property

of decryption share extractability, the simulator, for each
output target entry /i it wants to output, produces the
appropriate /1 ; that together with the decryption shares
of the remaining mix servers yields /7 (more precisely, it
yields /7 with overwhelming probability, that is for those
runs where the adversary is semi-honest and produces
correct decryption shares). The simulator also outputs
simulated ZK proofs of correctness of j» using the
trapdoor from Q4.

S8. Finally, after the output is produced, S, computes its
decision as T’ does.

One can see that, by construction, the systems Q, and
ng(p), where C®*“(p) is the encryption oracle (the CPA
challenger for the used encryption scheme) with the challenge
bit fixed to p, coincide, except for the decryption step.
Because this step does does not affect the computatior;ncof T,
we know that the permutation 7* as computed by SI,C7 (P) g
the same as 7* computed by Q,,.

By the above, with overwhelming probability (for all
those runs where 7* is correct, as defined for the system
Op), the i-th entry output by O, (obtained by decrypting the
i-th encrypted output) is the same as the 7*(i)-th input entry
Xp[m*(i)] which, by construction, is the i-th entry output by

ng(p). Hence, the decrypted output of ng(P) and 0, is

the same. Therefore, the output of the decryption in ngc(p)
is correct.

Now, because we consider risk-avoiding adversaries, that
is adversaries that behave semi-honestly with overwhelming
probability (Lemma 2), we know that, again with overwhelm-
ing probability, the decryption shares produced by the dis-
honest mix servers are correct. Furthermore, because in this
case ﬁ,- yields, along with the remaining decryption shares,
the correct plaintext, by decryption share):n Fextractability, the
faked decryption share /2, produced in S5) i the same as
the honest decryption share /; produced in Q. Altogether,
we can conclude that these two systems coincide also in the
decryption step and, therefore, coincide completely. Hence
we have .

Pr[Q, — 1] =Pr[sS" @ — 1, ®)

By the IND-CPA property of the used encryption scheme,
we immediately obtain

Pris¢™ @ 1] =0 Pr(s¢ Y 1],)
Therefore, to complete the proof, it suffices to show that

PrisC™© s 1) = e PP @ 1 1), (10)

Re-encryption Game Simulator. To prove (10), we will
use the semantic security of the used encryption scheme
under re-encryption. Let R be the system that uses a re-
encryption oracle C™ and works as follows

R1. R generates all the common reference strings to be used
in the system, as it is done in Q (and hence in S,).

R2

R3.

R4.
RS.

R6.

R takes Zp as the plaintext input of senders in I,
encrypts these plaintext to obtain encrypted input y;, and
produces a simulated NIZKP of knowledge of plaintexts
for these ciphertexts (as S, does in S2).

It simulates the honest senders not in /; as S, does in
S3.

It produces the input of the adversary as S, does in S4.

R simulates the input validation steps as S, does in Step
S5. R also extracts the plaintexts from the ciphertexts
provided by the adversary as S, does in S5.

Note that the unencrypted input, after validation, pro-
duced by R is the same as the unencrypted input Xy

produced by ng«)) and SICW(O).

R simulates the mixing phase (including permutation
extraction) in the same way as S, in Step S6, with the
exception of the second mixing step of the honest mix
server M; which is simulated in the following way:

Let ¥ be the input to the second mixing step of
M;. By this point, R has extracted some permutations
m0,...,mj—1 (from dishonest mix server before M;).
Also, R has chosen a permutation 75 for the first mixing
step of M itself. Let] be the composition of these
permutations.

Let p be the permutation (on the set of input indices)
that maps X into Xo, that is X;[i] = ¥[p(i)]. Such a
permutation exists, because of the way Xy and X are
constructed (they are the same as multisets). Moreover,
this permutation only permutes indices corresponding to
the senders in I; (where the elements of 7y are located)
and keeps intact the remaining indices, that is, for i & I,
we have p(i) = p~ (i) = .

To simulate the second mixing step of the honest mix
server, R picks a random permutation w1 (as M;
would do). Additionally, R computes the permutation
p=miop lo(x})7, and 7241 = m2j410p. The sim-
ulator R then uses the re-encryption oracle to obtain
¥' = (mj iV} o {V'})-

Notice that, for all indices i such that 7} (i) ¢ I, these
two permutations work in exactly the same way, that
is m, !, (i) = %5, (i). Let us denote the set of such

J+1 2j+1

indices i by Ii (this set, intuitively, contains indices at
the point of the input to the second mixing step of M;

that do not map (via) to indices in Iy).

Now, R computes a vector ¥ from y” by substituting

every element of ¥’ that does not map to I, (that is, every
element at position k such that 71 [k] = mj11[k] € 1})
by a (freshly obtained) re-encryption of y'[m 41 (k)].

This vector ¥ is output as the resulting ciphertexts of
the second mixing step of M;. In addition, R commits
to m2j41 (note that this commitment may be wrong if

the used permutation was 72;1).

We can now see that, if the event I; holds true, which
implies that no index required in the audit phase for M;
to be opened to the right is mapped via 7} to Iz, then
R can easily output the required proofs of correct re-

encryption, as it was R who generated the re-encryptions.
Otherwise, R does not output the required ZK proofs
(this is, however, not important for the property we
prove).
Let us observe that, altogether, R, for the second mixing
step of Mj, outputs a re-encryption of mj41{y'} if the
challenge bit of the re-encryption oracle is 0, or a re-
encryption of 751 1{y'} if this bit is 1. Jumping ahead,
the whole system, again depending on the bit b, uses the
permutation 7* = 75 01 0T} Or T¥ = w5 041 07T,
with 75 being the composition of all the permutations
applied after the second mixing step of M;. Let us
also observe that p is constructed in such a way that
7*(i) = p~ ' (w*(i)) and therefore 7*{¥} = 7*{X|} (that
is X [TF* (l)] =X [7~T* (l)])
R7. R simulates the decryption step, similarly to S7, to
produce 7 {Xp}.
R8. R ouputs the decision of T".
Note that in the system 7' the extraction of permutations
succeeds (that is produces some permutation) with an over-
whelming probability. This property carries over through all
the systems, to the system R, as it is easily checkable by
each simulator. Therefore all the operations in the above
definition are well defined with overwhelming probability.
One can see that, by construction of R and S,

Pr(sS™ @ s 1] = PrREO) 15 1], (11)

(It is in fact easy to construct a bijection between the runs
in the two events, and hence, the probabilities are equal.)

Let S; be the system that works as S, but when it
simulates the second mixing step of the honest mix server
Mj, it uses the permutation 741, as defined in Step R6 and
it also commits to this permutation. Because 7, has the
same distribution as a random permutation, we immediately
have that

Prs @ s 1] = Pr[s¢™ O s 1), (12)
Let R be the system that works as R but instead of committing
to the permutation 741, it commits to 7. Using our
assumption that the commitment scheme is perfectly hiding
(recall that, for runs in I;, R/R is not required to open
commitments which are wrong), it easily follows that

PriRC M) 1] = Pr[RE" M — 1]. (13)
Now, using the observation we have already made, namely

that 7#*{¥;} (the output of the system S‘lcenL) is the same as
7*{Xy} (the output of RE“() | and hence, R€“(1)), we have

Pr(3C™ @ s 1] = PrRE M) 1 1], (14)
Therefore, we obtain
Pr(sS™ @ s 1] = Pr{(RE"M s 1). (15)

Finally, by the hiding property of re-encryption, we have
PriRE) i 1] =0 Pr[RE“W 5 1], (16)

which, together with the above, proves (10) and concludes
the proof of Lemma 5.

