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1 Introduction

In most cryptographic protocols, principals are described by a fixed sequence of
what we call receive-send actions. When performing such an action, a principal
receives a message from the environment and, after some internal computa-
tion, reacts by returning a message to the environment. Research on automatic
protocol analysis (Rusinowitch and Turuani, 2001; Amadio et al., 2002; Bore-
ale, 2001; Millen and Shmatikov, 2001) has concentrated on protocols where
a receive-send action can basically be described by a single rewrite rule of the
form t → t′: When receiving a message m, the message σ(t′) is returned as
output provided that σ is the matcher for t and m, i.e., σ(t) = m. In other
words, an input message is processed by applying the rewrite rule once on
the top-level. We call receive-send actions of this kind and protocols based on
such receive-send actions non-looping. It has been proved that for non-looping
protocols when analyzed w.r.t. a finite number of receive-send actions and the
standard Dolev-Yao intruder where the message size is not bounded, security
(more precisely, secrecy) is decidable even when principals can perform equal-
ity tests on arbitrary messages (Rusinowitch and Turuani, 2001; Amadio et al.,
2002; Boreale, 2001; Millen and Shmatikov, 2001), complex keys are allowed
(Rusinowitch and Turuani, 2001; Boreale, 2001; Millen and Shmatikov, 2001),
and the free term algebra assumption is relaxed by algebraic properties of
various operators, such as exclusive or (XOR), Diffie-Hellman exponentiation,
and RSA encryption (Chevalier et al., 2003a; Comon-Lundh and Shmatikov,
2003; Chevalier et al., 2003b; Shmatikov, 2004; Chevalier et al., 2005).

The main question we are concerned with in this paper is in how far security
is decidable for protocols where receive-send actions are complex and typically
involve an iterative or recursive computation; we call such receive-send actions
and protocols containing such actions recursive.

To illustrate the kind of receive-send actions performed in recursive protocols,
let us consider the key distribution server S of the Recursive Authentication
(RA) Protocol (Bull and Otway, 1997). In this protocol, the server S needs to
perform the following recursive receive-send action: The server S first receives
an a priori unbounded sequence of requests of pairs of principals who want
to share session keys. Then, S generates session keys, and finally sends a
sequence of certificates (corresponding to the requests) containing the session
keys. Receive-send actions of this kind are typical for group protocols, but
also occur in protocols such as the Internet Key Exchange protocol (IKE)—see
(Meadows, 2000b) for a description of some recursive protocols. As pointed out
by Meadows (2000b) and illustrated in (Zhou, 1999; Ferguson and Schneier,
2000), modeling recursion is security relevant.

A natural way to describe recursive receive-send actions is by tree transducers,
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which extend the class of transductions expressible by single rewrite rules (with
linear left-hand side). More precisely, to study decidability, in Section 2 we
introduce non-deterministic top-down tree transducers (TTAC’s) with look-
ahead and ε-transitions which work with a signature containing an infinite
set of what we call anonymous constants (AC’s), over which the TTAC’s has
only very limited control. TTAC’s can generate new (anonymous) constants,
a feature often needed to model recursive receive-send actions; in the RA
protocol for instance, the key distribution server needs to generate (an a priori
unbounded number of) session keys.

The main result of this paper is that 1) security (for a finite number of receive-
send actions, atomic keys, and the standard Dolev-Yao intruder where the
message size is not bounded) is decidable if receive-send actions are modeled
by TTAC’s (Section 5), and that 2) certain features of models for non-looping
protocols cannot be added without losing decidability: As soon as TTAC’s are
equipped with the ability to perform equality tests between arbitrary mes-
sages, as soon as complex keys are allowed, or as soon as the free term algebra
assumption is relaxed by adding XOR or Diffie-Hellman exponentiation secu-
rity is undecidable (Section 6).

The undecidability results are obtained by reductions from Post’s Correspon-
dence Problem. The decidability result is obtained in two steps. First, we show
that TTAC’s are powerful enough to simulate the intruder. This allows us to
describe attacks as the composition of transducers. We can then reduce the
security problem to the iterated pre-image word problem for TTAC’s, which
we show to be decidable (Section 3). Given a term t, a “regular set” R of
terms, and a sequence of TTAC’s, the iterated pre-image word problem asks
whether on input t the composition of the TTAC’s can produce an output
in R. Here, “regular set” means a set of terms recognizable by a new kind
of tree automata, tree automata over signatures with anonymous constants
(TAAC’s), which can compare anonymous constants for equality.

Related work. Recursive protocols, such as the RA protocol and the A-
GDH.2 protocol (Ateniese et al., 1998), have been analyzed manually (Pereira
and Quisquater, 2001) and semi-automatically using theorem provers or spe-
cial purpose tools (Paulson, 1997; Bryans and Schneider, 1997; Meadows,
2000a).

Decidability for recursive protocols has initially been investigated in (Küsters,
2002). However, there are significant differences to the present paper. First,
in (Küsters, 2002) word transducers are employed, which are less powerful
than tree transducers. As a result, tree transducers provide a clearer picture
of the differences between recursive and non-looping protocols, and also allow
to trace a tighter boundary of decidability. Second, generating new constants
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(e.g., session keys) has not been considered in (Küsters, 2002). Third, TTAC-
based models of (recursive) protocols are in general much more precise than
models based on word transducers because session keys can be generated and
nonces need not necessarily be typed; in Section 7 this is illustrated for the
RA protocol. Fourth, the proof techniques employed are different. In (Küsters,
2002), a quite involved and technical pumping argument is used to obtain
decidability since word transducers are not powerful enough to simulate the
intruder. In the current paper, the characterization of attacks in terms of
the composition of transducers allows a more elegant proof, and anonymous
constants present a completely new challenge.

Recently, Truderung (2005b) proposed an alternative model for recursive pro-
tocols in which he shows that security is NEXPTIME-complete. Instead of
transducers, he uses what he calls selecting theories, which are certain classes
of Horn clauses, to model recursive receive-send actions. The expressivity of
these theories is orthogonal to the expressivity of our transducers. On the
one hand, selecting theories can only output sequences of simply structured
messages, while transducers can produce much more complex messages. For
instance, transducers can produce output of size unrelated to the size of the in-
put. In Truderung’s model the output size is linear in the input size. Also, new
constants can not be generated, and hence, session key generation can only
be approximated. On the other hand, selecting theories allow to test arbitrary
messages for equality. The proof techniques applied by Truderung are very dif-
ferent from the ones employed in the present paper. While we, as explained,
use automata-theoretic techniques, the techniques employed by Truderung are
closer to those for non-looping protocols. In (Küsters and Truderung, 2007),
Truderung’s model has been extended to include the exclusive OR (XOR)
and decidability and undecidability results have been shown in this extended
model.

In various papers, automata-theoretic techniques have been applied to the
analysis of cryptographic protocols (see, e.g., (Monniau, 1999; Genet and Klay,
2000; Goubault-Larrecq, 2000; Comon et al., 2001)). However, these works aim
at analyzing non-looping protocols w.r.t. an unbounded number of sessions and
do not seem to be applicable to recursive protocols in an obvious way. To the
best of our knowledge, the work in (Küsters, 2002) and the present work are
the first to employ transducers (over infinite signatures) for protocol analysis.
Automata and transducers over infinite signatures (although quite different
from those considered here) have been studied in the context of type checking
and type inference for XML queries with data values (see, e.g., (Alon et al.,
2003; Neven et al., 2001)).

Structure of the paper. In Section 2, we introduce the mentioned tree
automata (TAAC’s) and transducers (TTAC’s) over signatures with anony-
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mous constants and prove basic properties. Section 3 provides the definition
of the iterated pre-image word problem and the proof that this problem is
decidable for TTAC’s. Our tree transducer-based protocol model is presented
in Section 4. In Section 5, we show that security in this model is decidable.
The purpose of Section 6 is 1) to briefly discuss the relationship between our
model and models for non-looping protocols, and 2) to prove the aforemen-
tioned undecidability results. Section 7 contains formal TTAC-based models
of the Recursive Authentication Protocol and the Needham Schroeder Public
Key Authentication Protocol. We conclude in Section 8.

Basic definitions and notation. A symbol is an object with an arity
assigned to it. A symbol of arity 0 is called a constant (symbol). A signature
is a set of symbols. When Σ denotes a signature, then Σn denotes the set of
symbols from Σ with arity n.

The set of terms over a signature Σ is denoted TΣ. For a set C of constant
symbols disjoint from a signature Σ, we set TΣ(C) = TΣ∪C .

We fix an infinite supply X of variables among which we find x0, x1, x2, . . .
For n ≥ 0, we write T n

Σ for the set of all terms in TΣ({x0, . . . , xn−1}). A term
t ∈ T n

Σ is linear if every xi with i < n occurs at most once in t. When t ∈ T n
Σ

and t0, . . . , tn−1 are arbitrary terms, we write t[t0, . . . , tn−1] for the term which
is obtained from t by simultaneously substituting ti for xi, for every i < n. A
substitution over Σ is a function σ : TΣ(X) → TΣ(X) such that for each term
t, σ(t) is obtained from t by simultaneously substituting σ(x) for x, for every
x ∈ X.

By N
∗ we denote the set of finite strings over the non-negative integers N. The

empty string is denoted ε. As usual, v ∈ N
∗ is called a prefix of w ∈ N

∗ if
there exists v′ ∈ N

∗ such that w = vv′ where vv′ denotes the concatenation of
v and v′. A set S ⊆ N

∗ is called prefix closed if with v ∈ S every prefix of v
belongs to S.

We use the notions “term” and “tree” interchangeably since a term t can be
seen as a tree. Formally, a tree is a mapping from a non-empty, finite, and
prefix closed set S ⊆ N

∗ into Σ such that if t(π) ∈ Σn for some n ≥ 0 and
π ∈ S, then {i | πi ∈ S} = {0 . . . , n− 1}, and if t(π) is a variable, then
{i | πi ∈ S} = ∅. We call S the set of positions of t and denote this set by
P(t).

For a term t and π ∈ P(t), t|π shall denote the subterm of t at position π, i.e.,
P(t|π) = {π′ | ππ′ ∈ P(t)} and t|π(π′) = t(ππ′) for every π′ ∈ P(t|π).

A subset τ of TΣ × TΣ is called a transduction over Σ. For a term t, we define
τ(t) = {t′ | (t, t′) ∈ τ}. If τ and τ ′ are transductions over Σ, then their

5



composition τ ◦ τ ′ defines the transduction {(t, t′) | ∃t′′((t, t′′) ∈ τ ′ ∧ (t′′, t′) ∈
τ)}, i.e., the composition is read from right to left. Given a transduction τ
over Σ and a set R ⊆ TΣ, the pre-image of R under τ is the set τ−1(R) = {t |
∃t′ ∈ R with (t, t′) ∈ τ}.

2 Tree Automata and Tree Transducers with Anonymous Con-

stants

In this section, we describe the models of tree automata and transducers that
we use, completely independent of the application we have in mind, as they
are of general interest. Before defining our tree automata and transducers, we
introduce signatures with anonymous constants.

2.1 Signatures and Anonymous Constants

A pair (Σ, C) consisting of a finite signature Σ and an arbitrary infinite set
C of constant symbols disjoint from Σ is called a signature with anonymous
constants; the elements of Σ and C are referred to as regular symbols and
anonymous constants, respectively. With such a signature, we associate the
signature Σ∪C, denoted ΣC . That is, when we speak of a term over (Σ, C) we
mean a term over ΣC . In what follows, let occC(t) denote the set of elements
from C that occur in the term t; similarly, let occC(S) denote the set of
elements from C that occur in any term of a set of terms S.

2.2 Tree Automata over Signatures with Anonymous Constants

Our tree automata are non-deterministic bottom-up tree automata that ac-
cept trees over signatures with anonymous constants; they have full control
over the regular symbols but only very limited control over the anonymous
constants. For instance, it will be the case that with every tree such an au-
tomaton accepts, it accepts every tree which is obtained from this one just by
permuting—consistently renaming—the anonymous constants.

Our tree automata have two distinguished states, qd and qs, which are used
as initial states for the anonymous constants: In every run on a tree t ∈ TΣC ,
the automaton first non-deterministically assigns qd and qs to the anonymous
constants that occur in t in an arbitrary way under the restriction that at
most one anonymous constant, which is then called the selected constant, gets
assigned qs and all the others get assigned qd, the default value. Note that
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different occurrences of the same anonymous constant in t get assigned the
same state, qd or qs. Once these states have been assigned to the anonymous
constants, the rest of the run of the automaton on t proceeds in the standard
bottom-up fashion.

Formally, a tree automaton (TAAC) over a signature with anonymous con-
stants (Σ, C) is a tuple

A = (Q, qd, qs,∆, F ) (1)

where Q is a non-empty finite set of states, qd ∈ Q is the default state, qs ∈ Q
is the selecting state, ∆ is a finite set of transitions as specified below, and
F ⊆ Q is a set of final states. If the set of final states is omitted, we speak of
a semi TAAC.

Formally, transitions are pairs of a certain type, but for better reading, we
write a transition (t, q) as t → q. There are two types of transitions: A con-
suming transition is of the form

f(q0, . . . , qn−1) → q

where f ∈ Σn, q, q0, . . . , qn−1 ∈ Q; an ε-transition is of the form

q → q′

where q′, q ∈ Q.

We call a TAAC deterministic if it does not contain ε-transitions and if for
every f ∈ Σn and q0, . . . , qn−1 ∈ Q there exists at most one q ∈ Q such that
f(q0, . . . , qn−1) → q ∈ ∆.

Each TAAC over a signature with anonymous constants (Σ, C) defines a set of
trees from TΣ(C). To describe this set, we view the set Q as a set of constants
and define for each term t ∈ TΣ(C ∪ Q) the set [t]A of states which the
automaton reaches after having read the term t.

We first give an inductive definition for terms t ∈ TΣ(Q) without anonymous
constants. In this case, [t]A is the smallest set satisfying the following rules:

− If t ∈ Q, then t ∈ [t]A.
− If t = f(t0, . . . , tn−1) and there exist q0, . . . , qn−1 with f(q0, . . . , qn−1) →

q ∈ ∆ and qi ∈ [ti]A for every i < n, then q ∈ [t]A.
− If q ∈ [t]A and q → q′ ∈ ∆, then q′ ∈ [t]A.

A permitted substitution σ is a function σ : C → {qd, qs} where at most one
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element of C gets assigned qs. Now, for an arbitrary t ∈ TΣ(C ∪Q), we set

[t]A =
⋃

σ permitted

[σ(t)]A .

The tree language recognized by A is the language

T (A) = {t ∈ TΣ(C) | F ∩ [t]A 6= ∅} .

We say that a tree language over ΣC is TAAC-recognizable over (Σ, C) if it is
recognized by some TAAC over (Σ, C).

Before we provide some examples of (non) TAAC-recognizable languages, we
introduce a notation which we will use later. Given a term t ∈ T n

ΣC and sets
S0, . . . , Sn−1 ⊆ Q, we write

[t[S0, . . . , Sn−1]]A =
⋃

(q0,...,qn−1)∈S0×···×Sn−1

[t[q0, . . . , qn−1]]A.

Example 1 Assume Σ2 = {f} and Σi = ∅ for every i 6= 2. Let T= = {f(c, c) |
c ∈ C}. This language is recognized by a TAAC with only three states, say q0,
q1, and q2. We choose qd = q0 and qs = q1, F = {q2} and have only one
transition, namely f(q1, q1) → q2.

Example 2 Fix any signature (Σ, C) with anonymous constants. For every
i ≤ 3, let Ti be the tree language over ΣC which contains a tree t iff in t at least
i pairwise distinct anonymous constants occur. Then, it is easy to see that Ti

is TAAC-recognizable over (Σ, C) for i ≤ 2, but not for i = 3: For i = 0,
the TAAC should accept every tree. For i = 1, one defines a TAAC with a
distinguished state q = qd = qs to which anonymous constants are mapped.
The TAAC checks whether this state occurs in a run on a tree at least once
to make sure that the tree contains at least one anonymous constant. For
i = 2, the TAAC has states qd and qs with qd 6= qs and checks whether both
qd and qs occur in a run on a tree. The negative result for i = 3 immediately
follows from Lemma 3, which in particular implies that if a TAAC accepts
f(c, g(c′, c′′)) for anonymous constants c, c′, c′′, then it also accepts one of
f(c, g(c′′, c′′)), f(c′′, g(c′, c′′)), and f(c′, g(c′, c′′)).

To state the mentioned lemma, we need the notion of c-equivalent terms. Let
t and t′ be arbitrary terms and c an anonymous constant. Now, t and t′ are
c-equivalent if they coincide except for occurrences of anonymous constants
other than c, i.e., t and t′ are c-equivalent if there is a term u and substitutions
σ and σ′ with σ(X), σ′(X) ⊆ C \ {c} such that σ(u) = t and σ′(u) = t′. For
example, f(c, g(c′, c′′)) and f(c, g(c′′, c′′′)) are c-equivalent but f(c, g(c′, c′′))
and f(c′, g(c, c′′)) are not.
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Lemma 3 Let T be a TAAC recognizable language and t ∈ T . Then there
exists an anonymous constant c such that t′ ∈ T for every tree t′ which is
c-equivalent to t.

PROOF. (sketch) Let A be a TAAC recognizing T . Take for c the constant
which gets assigned qs in some accepting run of A on T . Now, the claim follows
easily. 2

Another example of TAAC-recognizable languages is the following class of
languages:

Example 4 Fix any signature (Σ, C) with anonymous constants. For every i,
let Ti be the tree language over ΣC which contains a tree t iff in t there are at
least i occurrences of (not necessarily different) anonymous constants. Then,
Ti is TAAC-recognizable over (Σ, C) for every i. Indeed, Ti is recognized by
the TAAC A = ({0, . . . , i, q}, q, q,∆, {i}) where for every f ∈ Σn and states
q1, . . . , qn ∈ {0, . . . , i, q}, ∆ contains the transition f(q1, . . . , qn) → j where
j = min(i,#{l | ql = q}+

∑

l∈{1,...,n},ql 6=q ql). That is, anonymous constants are
assigned to q and A counts the number of q’s up to i. If i is reached at the
root of the tree, the tree is accepted.

The above TAAC is what we call a weak TAAC. A TAAC is called weak
(WTAAC) if the default and the selecting state are identical, i.e., qd = qs. This
means that there actually is no selecting state. WTAAC’s are really weaker
because it is easy to see that, for instance, T= is not WTAAC-recognizable
over (Σ, C).

We conclude this section by summarizing basic properties of TAAC’s and
WTAAC’s. We start with a simple observation, which can be proved using a
straightforward powerset construction.

Lemma 5 Every TAAC is equivalent to a deterministic TAAC. The same
holds true for WTAAC’s. 2

But observe that for TAAC’s, there is still non-determinism involved because
of the freedom to choose which anonymous constant is assigned qs.

In the following lemma we consider closure properties of TAAC’s as well as
WTAAC’s. As we will see, the behavior of TAAC’s is quite different from that
of tree automata over finite signatures.

Lemma 6 Let (Σ, C) be a signature with anonymous constants. Then:

(1) The set of tree languages over (Σ, C) recognized by WTAAC’s over (Σ, C)
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is closed under union, intersection, and complementation.
(2) The set of tree languages over (Σ, C) recognized by TAAC’s over (Σ, C)

is closed under union.
(3) The set of tree languages over (Σ, C) recognized by TAAC’s over (Σ, C)

is closed under complementation iff Σ = Σ0 ∪ Σ1. The same holds true
for intersection.

PROOF. 1. This can be proved just as for bottom-up tree transducers: Clo-
sure under union follows from closure under intersection and complementation;
closure under intersection is shown using a standard product construction; clo-
sure under complementation follows from Lemma 5, because complementing
a deterministic WTAAC can be achieved by complementing its set of final
states.

2. Let A0 = (Q0, q
d
0 , q

s
0,∆0, F0) and A1 = (Q1, q

d
1 , q

s
1,∆1, F1) be TAAC’s. We

want to show that T (A0) ∪ T (A1) is recognized by some TAAC. Basically,
we construct the product automaton of A0 and A1 and use the following
equivalence: Given a tree t, there exists a permitted substitution σ such that
A0 or A1 accepts σ(t) iff there exists a permitted substitution σ0 such that A0

accepts σ(t) or there exists a permitted substitution σ1 such that A1 accepts
σ1(t).

More precisely, to construct a TAAC that recognizes T (A0)∪ T (A1), we first
make A0 and A1 complete as follows: i) We add new states s0 and s1 to A0

and A1, respectively, and ii) for every f ∈ Σn, q0, . . . , qn−1 ∈ Qi ∪ {si} we
add f(q0, . . . , qn−1) → si to the set of transitions of Ai for i = 0, 1. Let’s
denote the resulting automata by A2 and A3, respectively. We clearly have
T (Ai) = T (Ai+2) for i < 2. In the second step, we construct the following
product automaton:

(Q2 ×Q3, (q
d
2 , q

d
3), (q

s
2, q

s
3),∆, (F0 ×Q3) ∪ (Q2 × F1))

with (q2, q3) → (q′2, q
′
3) ∈ ∆ if q2 → q′2 ∈ ∆2 and q3 = q′3, or q2 = q′2 and q3 →

q′3 ∈ ∆3, and f((q1
2, q

1
3), . . . , (q

n
2 , q

n
3 )) → (q, q′) if f(q1

2, . . . , q
n
2 ) → q ∈ ∆2 and

f(q1
3, . . . , q

n
3 ) → q′ ∈ ∆3 for f ∈ Σn. Clearly, the resulting TAAC recognizes

T (A2) ∪ T (A3) = T (A0) ∪ T (A1).

3. First of all, if Σ = Σ0 ∪ Σ1 and A is a TAAC over (Σ, C), then T (A) =
T ((Q, qd, qd,∆, F ))∪T ((Q, qs, qs,∆, F )) since terms over (Σ, C) can only con-
tain at most one anonymous constant, and hence, in a run on such a term this
constant is either assigned qd or qs. Both these automata are WTAAC’s, so
by 1. we know that T (A) is recognized by a WTAAC, and, again by 1., so is
its complement. This proves one direction of the implication.

We now show that TAAC’s are not closed under complementation and inter-
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section if there is a binary symbol in Σ, say f . It is straightforward to extend
this to any signature with at least one symbol of arity ≥ 2. In what follows,
let #c(t) denote the number of occurrences of c in t.

For every n ≥ 1, we define the tree language

Ln = {f(t, t′) ∈ TΣC | ∃c(c ∈ C ∧ #c(t) 6= #c(t
′) mod n)} .

It is easy to see that Ln is TAAC-recognizable for every n ≥ 1 through a
construction similar to Example 4. However, we show that neither L2 = TΣC \
L2 nor L2 ∩ L3 are TAAC-recognizable.

By contradiction, assume that T = TΣC \L2 is recognized by some TAAC A as
in (1). Then this automaton would accept the term t = f(f(c0, c1), f(c0, c1))
for two distinct anonymous constants c0 and c1. Let c be a constant such
that the assignment qs 7→ c yields an accepting run for t. We proceed by a
case distinction. If c /∈ {c0, c1}, then A has an accepting run on t that does
not distinguish between c0 and c1, and hence, f(f(c0, c0), f(c0, c1)) ∈ T—a
contradiction. If c = c0, we have f(f(c0, c1), f(c0, c2)) ∈ T for a new constant
c2—a contradiction. And if c = c1, we have f(f(c0, c1), f(c2, c1)) ∈ T for a
new constant c2—again a contradiction.

Now assume that there exists a TAAC A recognizing L2 ∩ L3. For c ∈ C and
n ≥ 2, let tnc = f(c, f(c, · · ·f(c, c))) such that #c(t

n
c ) = n. Let c0 and c1 be

two distinct anonymous constants. Obviously, t = f(f(t3c0, t
2
c1

), f(t6c0, t
4
c1

)) ∈
L2 ∩ L3. Just as above, by considering different cases for c, one shows that
variants of t are recognized by A although they do not belong to L2 ∩ L3,
which leads to a contradiction. 2

We finally note that for TAAC’s the word and emptiness problem are decid-
able:

Lemma 7 The word and the emptiness problem are decidable for TAAC’s,
and thus, WTAAC’s.

PROOF. For the word problem—which asks whether given a term and a
TAAC, the TAAC recognizes the term—this is obvious. For the emptiness
problem—which asks whether given a TAAC, the language recognized by the
TAAC is empty—one can show by the usual pumping argument on bottom-
up tree automata that if a TAAC recognizes a tree then also a tree of depth
bounded by the number of states of the TAAC, and, clearly, only two fixed
different anonymous constants have to be considered (one for qs and one for
qd). Now, decidability of the emptiness problem easily follows. 2
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2.3 Tree Transducers over Signatures with Anonymous Constants

Tree transducers come in many different flavors. Our model is designed in
such a way that (1) the pre-image of a TAAC-recognizable language is TAAC-
recognizable again and (2) we can (easily) model the cryptographic protocols
and the adversary we want to. These two goals are opposed to each other: to
achieve (1), the model needs to be weak, to achieve (2), it needs to be strong.
An important aspect of (2) is that it will be necessary that an unbounded
number of anonymous constants may be introduced by a tree transducer, but
only in a very weak fashion.

Our model is a top-down tree transducer, that is, a given tree is transformed
into a new tree according to certain rewrite rules, which are applied from the
root of the tree to its leaves. It has several specific features:

− a WTAAC look-ahead,
− a mechanism for generating new anonymous constants, and
− a register for one anonymous constant.

In addition, our tree transducers may be non-deterministic and may contain
ε-transitions.

To define our transducers, we need some more notation. We fix a signature
(Σ, C) with anonymous constants and a finite set S of states, whose elements
we view as binary symbols. We assume that we are given a set V = {vR, vN}
of two variables for anonymous constants: vR represents the aforementioned
register, vN refers to a newly generated anonymous constant.

A state term is of the form s(z, t) for s ∈ S, z ∈ C ∪ {∗, vR, vN}, and t ∈
TΣ(C ∪X). The term t is called the core term of the state term. If z belongs
to some set D ⊆ C ∪ {∗, vR, vN}, then we say s(z, t) is a D-state term.

Intuitively, a state term of the form s(∗, t) or s(c, t) with c ∈ C is part of
a configuration of a transducer and means that the transducer is about to
read t starting in state s where the register does not store a value or stores the
anonymous constant c, respectively. To describe transitions we use state terms
of the form s(vR, t), s(vN , t), and again s(∗, t), but not s(c, t). We now define
our tree transducers and their computation formally, along with examples.

Formally, a tree transducer (TTAC) over a signature with anonymous con-
stants (Σ, C) is a tuple

T = (S, I,A,Γ) (2)

where S is a finite set of states, I ⊆ S is a set of initial states, A is a semi
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WTAAC over (Σ, C), the look-ahead automaton, and Γ is a finite set of tran-
sitions as described below.

A transition is of the form

s(z, t) →q t′[vR, vN , t
′
0, . . . , t

′
r−1] (3)

where

(1) q ∈ Q is the look-ahead, with Q the set of states of A,
(2) s(z, t) is an {vR, ∗}-state term (recall that this means that z = vR or

z = ∗) with t ∈ T n
Σ and t linear,

(3) t′ ∈ T r+2
Σ (not necessarily linear), where vR does not occur in t′[vR, vN ,

t′0, . . . , t
′
r−1] if z = ∗, and

(4) each t′i is either a variable occurring in t or a {z, vN , ∗}-state term with
the core term being a subterm of t.

Observe that the condition in 3. is not a real restriction, it is just to make the
formalism well-defined: if z = ∗, the register is undefined, which means it does
not make any sense to use its content (vR) on the right-hand side of the rule,
so vR should not appear in it.

When vN occurs in t′[vR, vN , t0, . . . , tr−1], then the transition is called gen-
erative, and non-generative otherwise. Sometimes we omit the look-ahead q
when we write transitions. This is equivalent to assuming that the look-ahead
is some state q in which A accepts every term. If A does not contain such a
state, then A can be extended accordingly. For s ∈ S, we denote by T (s) the
transducer T with s as its only initial state.

Before defining the computation of TTAC’s formally, let us consider a simple
example of a TTAC and its computation (see Example 9 for a more complex
setting).

Example 8 Let Σ0 = {d}, Σ1 = {f}, Σ2 = {g}, and Σ = Σ0 ∪ Σ1 ∪ Σ2. We
consider a TTAC T over (Σ, C) with only one state s, no look-ahead, and the
following transitions:

s(∗, f(x)) → g(s(vN , x), vN) , (4)

s(vR, f(x)) → g(s(vR, x), vR) , (5)

s(vR, d) → vR . (6)

Assume that t = f(f(d)) is given as input to T . Then, the initial configuration
of T is s(∗, t), which means that T is in state s, is about to read t, and does
not contain an anonymous constant in its register. The only transition that
can be applied to this configuration is (4), where x is replaced by f(d) and
vN is replaced by a newly generated constant, say c. The result of applying
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(4) to s(∗, t) is the new configuration g(s(c, f(d)), c). Now, (5) can be applied
to s(c, f(d)) where vR, the register variable, is replaced by c and x by d. (In
general, the intermediate output produced by a TTAC may contain several
state terms and to these state terms transitions are applied independently.)
The result of applying (5) to s(c, f(d)) is g(s(c, d), c), and the overall output
produced by T so far is g(g(s(c, d), c), c). At this point, (6) can be applied to
s(c, d) yielding the overall output g(g(c, c), c). This term does not contain a
state term and is considered an output of T on input t. Note that since T

could have generated other anonymous constants than c in the first step of
the computation, all terms of the form g(g(c′, c′), c′) with c′ ∈ C are possible
outputs of T .

The fact that TTAC’s may produce several different outputs for the same input
is not only due to the fact that anonymous constants cannot be distinguished.
Even modulo renaming of anonymous constants, given one input term, several
outputs can be produced by a TTAC’s as TTAC’s may be non-deterministic.
Also, since TTAC’s may contain transitions which do not consume input sym-
bols, the set of outputs may be infinite even modulo renaming of anonymous
constants. Consider, for instance, the transition

s(vR, f(x)) → g(s(vR, f(x)), vR). (7)

This transition works as (5), but with one difference: It does not consume the
input symbol f . Adding this transition to T above and given the input term
t from above, all terms of the form

g(g(· · ·g(c, c) · · · ), c), c)
︸ ︷︷ ︸

n occurrences of g

for n ≥ 2 are possible outputs of T .

Formally, the computation a TTAC carries out is described by a sequence
of rewriting steps. The corresponding rewrite relation `U is defined w.r.t. a
subset U ⊆ C of anonymous constants to ensure that whenever the TTAC
is supposed to generate a new constant this constant does not belong to U .
Later U will be the set of anonymous constants in the input term, which then
guarantees that the anonymous constants generated by the TTAC are different
from those occurring in the input.

To define `U , suppose we are given a term u0 = u1[s(c, u2)] where u2 =
t[t0, . . . , tn−1] ∈ TΣC , and hence, t ∈ TΣC ({x0, . . . , xn−1}) (see page 5), and u1

is linear, and a transition τ as in (3) with z = vR. Let σ be the substitution
defined by σ(xi) = ti. Then, if q ∈ [u2]A (i.e., the current input satisfies the
look-ahead),

u0 `U u1[t
′[c, c′, σ(t′0), . . . , σ(t′r−1)]]
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for every c′ ∈ C \ (occC(u0)∪U). Observe that if τ is non-generative, c′ and U
are irrelevant. Also note that the newly generated anonymous constant does
not occur in U and in the output term computed so far. The rewriting step in
case u0 = u1[s(∗, u2)] is defined in the same way, but it is required that z = ∗.

A sequence s(∗, t) `U t1 `U t2 `U · · · `U t′ with t and t′ terms over (Σ, C) is
called a computation.

Let `∗
U denote the reflexive transitive closure of `U . We let t `∗ t′ be a short

form for t `∗
occC(t) t

′. The relation on TΣ(C) defined by the TTAC T is

τT = {(t, t′) ∈ TΣC × TΣC | ∃s(s ∈ I ∧ s(∗, t) `∗ t′)} .

We say that a transduction τ on (Σ, C) is TTAC-realizable if there exists a
TTAC T such that τT = τ . We call two TTAC’s equivalent if they realize the
same transduction.

Let us look at another slightly more complex example.

Example 9 Let Σ0 = {d}, Σ1 = {f}, Σ2 = {g} and C be an infinite set of
anonymous constants. Consider the transduction τ on (Σ, C) where (t, t′) ∈ τ
if t does not contain f and t′ is obtained from t by replacing every maximal
subterm which does not contain anonymous constants by any term of the form
g(f(f(. . . f(c) . . . )), f(f(. . . f(c) . . . ))) for a new anonymous constant c, where
the arguments of g may be of any depth and don’t need to be equal, only the
anonymous constant c needs to be the same in both arguments of g. Subterms
of t that contain an anonymous constant are simply copied. For example, a
possible transduction of g(g(d, d), g(g(c′, c′, ), c′)) for an anonymous constant c′

is g(g(f(f(f(c))), f(c)), g(g(c′, c′), c′)) where c is a new anonymous constant,
in particular c 6= c′. We show that τ is TTAC-realizable.

Let A be the semi WTAAC with states qC , qR, qM , qf where qC is the default
state and the transitions are:

d→ qR ,

g(qR, qR) → qR ,

qC → qM ,

g(qR, qM) → qM ,

g(qM , qR) → qM ,

g(qM , qM) → qM ,

d→ qf ,

qC → qf ,

g(qf , qf) → qf .
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Then qf ∈ [t]A iff f does not occur in t; qR ∈ [t]A iff t does not contain
f nor anonymous constants; and qM ∈ [t]A iff t does not contain f but an
anonymous constant.

Now it is easy to construct the desired TTAC. We choose sI to be its initial
state and use the following transitions:

sI(∗, x0) →
qf s0(∗, x0) , (8)

s0(∗, x0) →
qC x0 , (9)

s0(∗, g(x0, x1)) →
qM g(s0(∗, x0), s0(∗, x1)) , (10)

s0(∗, x0) →
qR g(sf(vN , x0), sf(vN , x0)) , (11)

sf(vR, x0) → f(sf(vR, x0)) , (12)

sf(vR, x0) → vR . (13)

Transition (8) is used to check whether the input term does not contain f .
Transition (9) is applied if the input term is an anonymous constant. This
constant is simply copied into the output term. Transition (10) is applied if
the input term starts with g but contains an anonymous constant. Hence,
this term is not replaced at this point and the computation proceeds with the
arguments of g. Transition (11) is applied if the current input term does not
contain an anonymous constant, and hence, since the TTAC processes terms
top-down, the current input term is a maximal subterm of the original input
term without anonymous constants, and hence, is supposed to be replaced by
g(f(· · ·f(c) · · · ), f(· · ·f(c) · · · )) for a new anonymous constant c, which in
(11) is created using vN . The transitions (12) and (13) are used to produce
terms of the form f(· · ·f(c) · · · ) where c is the anonymous constant that was
generated when transition (11) was applied.

A class C of transductions is closed under composition if for all transductions
τ and τ ′ we have that τ, τ ′ ∈ C implies τ ◦ τ ′ ∈ C. It is well-known (Engelfriet,
1982) that the set of transductions realized by non-deterministic top-down
tree transducers over finite signatures is not closed under composition. It is
easy to see that this also holds true for TTAC’s. One example illustrating this
fact is the following: Obviously, for g ∈ Σ1, one can define a TTAC T 1 that
on input a ∈ Σ0 generates gn(a) = g(g(· · ·g(a))) for every n ≥ 0. Also, it
is easy to construct a TTAC T 2 that when given a term t as input outputs
f(t, t). Now, on input a the transduction τT 2

◦ τT 1
produces the tree language

{f(gn(a), gn(a)) | n ≥ 0}. By standard pumping arguments, it is easy to prove
that no single TTAC can produce such an output on input a.

Lemma 10 The set of TTAC-realizable transductions is not closed under
composition.
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3 The Iterated Pre-image Word Problem

The objective of this section is to prove that the iterated pre-image word
problem is decidable. This problem is defined as follows:

IteratedPreImage. Given a term t over (Σ, C), a TAAC B over (Σ, C),
and a sequence of TTAC’s T 0, . . . ,T l−1 over (Σ, C) with τ = τT0

◦ · · · ◦ τTl−1
,

decide whether t ∈ τ−1(T (B)).

The key for proving decidability of this problem is:

Theorem 11 The pre-image of a TAAC-recognizable tree language under a
TTAC-realizable transduction is a TAAC-recognizable tree language. More-
over, an appropriate TAAC can be constructed effectively.

Using this theorem, we immediately obtain:

Corollary 12 IteratedPreImage is decidable.

PROOF. Given t, B, T 0, . . . ,T l−1, and τ as above, by Theorem 11 it follows
that a TAAC A recognizing τ−1(T (B)) can be constructed effectively. Since
by Lemma 7 the word problem for TAAC’s is decidable, we can decide whether
t ∈ T (A), and thus, whether t ∈ τ−1(T (B)). 2

The runtime of the decision procedure described in the proof of the corollary
may be non-elementary since, as we will see, the number of states of the TAAC
constructed in the proof of Theorem 11 may be exponential in the size of the
input.

The proof of Theorem 11 is carried out in three steps. We first show how
TTAC’s can be turned into what we call simple TTAC’s (Section 3.1). We
then construct a TAAC recognizing the pre-image of a TAAC-recognizable tree
language under a simple TTAC (Section 3.2) and finally prove the correctness
of this construction (Section 3.3).

3.1 Simple TTAC’s

We say that a transition of the form (3) is simple if

(1) the term t is either
(a) a variable—in this case we call the transition ε-transition—, or
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(b) of the form f(x0, . . . , xn−1) for some f ∈ Σn—in this case we call the
transition Σ-transition—, and

(2) for every i < r, the term t′i is either a variable or a state term of the form
s(z′, x′) where x′ is a variable occurring in t.

We call a TTAC simple if it only contains simple transitions. The main ad-
vantage of simple TTACs is that the left-hand side of transitions of simple
TTACs are flat, and hence, their application is more local and applications
of different transitions do not overlap too much. This makes these transitions
easier to handle and therefore helps in the proof of Theorem 11.

Before we prove that every TTAC can be turned into an equivalent simple
TTAC, we observe:

Lemma 13 For every linear term t ∈ T n
ΣC , there exists a WTAAC At over

(Σ, C) and a state, say qt, in At such that qt is the only final state of At and
T (At) = {t′ | there exists a substitution σ such that σ(t) = t′}.

PROOF. The proof can be carried out by a straightforward structural in-
duction on t. 2

Note that the lemma does not hold for non-linear terms.

We next show:

Lemma 14 Every TTAC is equivalent to a simple TTAC, which can be con-
structed in polynomial time.

PROOF. Let T be a TTAC as in (2) and let Γ contain a non-simple transition
of the form

s(z, t) →q t′[vR, vN , t
′
0, . . . , t

′
r−1, xi0 , . . . , xil−1

] (14)

where the t′i are state terms and the xij are variables occurring in t.

We explain how (14) can be replaced by several simple transitions; by iterat-
ing this argument all non-simple transitions of T can be replaced by simple
transitions.

The idea is as follows: We first use an ε-transition to check the look-ahead q
and nothing else. Then we extend A by At (Lemma 13) to be able to check
whether the input term matches with t. This is done in an ε-transition with
qt as look-ahead. Next, we take care of the most difficult problem, namely
eliminating occurrences of subtrees of t on the right-hand side. We simply
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encode the positions of these subtrees in appropriate states. Finally, we add
transitions for the states introduced in the previous step, which make sure
that the subtrees of trees they encode are processed in the right way.

In the first step, we simply add the ε-transition

s(z, x) →q s′(z, x) , (15)

where s′ is a new state. This transition does not change the input, but it can
only be taken if the input satisfies the look-ahead condition.

In the second step, we check that the input term matches t. Therefore, we add
the states and the transitions of At, assuming disjoint state sets. In addition,
we add the ε-transition

s′(z, x) →qt s′′(z, x) , (16)

where s′′ is another new state and qt is as in Lemma 13. This transition does
not change the input either, but it can only be taken if the input matches t.

In the third step, we encode references to subterms of t in new states. To this
end, we add states of the form pq

π and pπ for π ∈ P(t) and q ∈ S. We will later
add transitions in such a way that these states satisfy the following properties:

(1) pπ(z, t′′) `∗
U t′′′ iff t′′|π = t′′′, and, similarly,

(2) pq
π(z, t′′) `∗

U t′′′ iff q(z, t′′|π) `∗
U t′′′,

for any choice of terms t′′ and t′′′, any choice of U ⊆ C, and any choice of z.
Given these properties, it is now easy to add the right transition. We assume
that each t′i is of the form si(zi, t

′′
i ) and for each i we pick a position πi such

that t′′i = t|πi
. (If there are several positions that satisfy this condition, any

one will be good.) We also pick for every j a position π ′
j such that xij = t|π′

j
.

Now we can add the following ε-transition:

s′′(z, x) → t′[vR, vN , p
s0

π0
(z0, x), . . . , p

sr−1

πr−1
(zr−1, x),

pπ′
0
(∗, x), . . . , pπ′

l−1
(∗, x)] .

In the fourth step, we add the transitions that are needed to guarantee 1. and
2. from above. First, for every f ∈ Σn, q ∈ Q, i < n, z ∈ {vR, ∗}, and π with
iπ ∈ P(t) we add

pq
iπ(z, f(x0, . . . , xn−1)) → pq

π(z, xi) ,

where, by convention, pq
ε = q. Similarly, for every f ∈ Σn, i < n, and π with

iπ ∈ P(t) we add

piπ(∗, f(x0, . . . , xn−1)) → pπ(∗, xi) ,
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where, by convention, pπ(∗, xi) is replaced by xi in case π = ε.

It can now easily be verified that the new TTAC is equivalent to the original
one, by induction on the length of a computation. 2

3.2 Construction of the TAAC Recognizing the Pre-image

Given a TAAC I (the image automaton) and a TTAC T , we construct a TAAC
P (the pre-image automaton) such that T (P ) = τ−1

T
(T (I)). In Section 3.3,

we then prove that our construction is correct.

In what follows, let

I = (QI , q
d, qs,∆I , FI)

be a TAAC over (Σ, C) and

T = (QT , IT ,A,ΓT )

be a TTAC over (Σ, C) with

A = (QA, q
d
A, q

d
A,∆A)

as its look-ahead automaton. As mentioned, we want to construct a TAAC

P = (QP , q
d
P , q

s
P ,∆P , FP )

over (Σ, C) such that

T (P ) = τ−1
T

(T (I)).

Due to Lemma 14, we may assume that T is simple. Thus, we may assume
that ΓT consists of Σ-transitions of the form

q(z, f(x0, . . . , xn−1)) →
qA

t′[vR, . . . , vR, vN , . . . , vN , t
′
0, . . . , t

′
r−1, xi0, . . . , xil−1

] (17)

where t′ is linear, ij ∈ {0, . . . , n− 1} for every j < l, t′i is a {vR, ∗}-state term
of the form qi(zi, xji

) with ji ∈ {0, . . . , n− 1}, and vR may only occur on the
right-hand side of (17) if z = vR, and ε-transitions of the form

q(z, x) →qA t′[vR, . . . , vR, vN , . . . , vN , t
′
0, . . . , t

′
r−1, x, . . . , x] (18)

where t′ is linear, t′i is a {vR, ∗}-state term of the form qi(zi, x), and vR may
only occur on the right-hand side of (18) if z = vR. Note that assuming t′ to
be linear is w.l.o.g. since we can duplicate the entries vR, vN , t′i, x, and xij .
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Roughly speaking, the idea behind the construction of P is that in a run of
P on t ∈ TΣC , P simulates the runs of I on all possible outputs t′ of T on
input t simultaneously. The problem is that runs of I are required to satisfy a
global condition, namely that the default and the selecting states qd and qs of
I are assigned to constants in a consistent way—by a permitted substitution.
To capture this global condition in P , we use that runs of P also meet such a
global condition. More precisely, the permitted substitution in a run of P on
t will determine the permitted substitutions that are considered in the runs
of I on the trees t′ in the following way:

(1) (“Yes” case) If in a run of P on t the state qs
P is assigned to an anonymous

constant c (occurring in t), then in this run only those runs of I will be
considered where qs is assigned to the same anonymous constant c and
qd is assigned to all other anonymous constants, in particular, to all the
anonymous constants generated by T .

(2) (“No” case) If in a run of P on t the state qd
P is assigned to each anony-

mous constant occurring in t, then in this run only those runs of I will
be considered where qd is assigned to each anonymous constant occurring
in t′ except for at most one anonymous constant generated by T , which
may get assigned qs.

In order to be able to distinguish between 1. and 2. and to make sure that in
2. at most one anonymous constant gets assigned qs, the TAAC P does some
book keeping.

We now provide the formal definition of P . In Section 3.3, we show that P in
fact recognizes the pre-image.

State Space of P . The state space of P is defined by

QP = 2QI × 2QA × {yes, no} × 2QT×{qd,qs,∗}×QI × 2QT×{qd,∗}×QI

where we use the following notation to access the individual components of a
state. For a state b = (S, L, α,Md,Ms) of P , we define:

− Iset(b) = S,
− LA(b) = L,
− seen(b) = α,
− D(q,s)(b) = {a | (q, s, a) ∈Md} for every q ∈ QT and s ∈ {qd, qs, ∗}, and
− S(q,s)(b) = {a | (q, s, a) ∈Ms} for every q ∈ QT and s ∈ {qd, ∗}.

The intuitive meaning of the different components of a state b is as follows.
The set Iset(b) collects the states reachable by I on the input tree t to P . The
set LA(b) collects the values of the look-ahead of T for the given input tree
t. The value seen(b) distinguishes between 1. and 2. above: if P has observed
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(seen) that we are in case 1., then seen(b) = yes, and seen(b) = no otherwise.
The other two components are more difficult to describe.

In D(q,s)(b) we collect all states reachable in a run of I on some output tree t′

obtained by running T on t starting in state q where the register is undefined
(s = ∗), holds an anonymous constant which qd is assigned to (s = qd), or holds
an anonymous constant which qs is assigned to (s = qs), where, in the two
latter cases, the constant is assumed not to belong to t. The runs of I on t′ are
simulated w.r.t. a permitted substitution that maps all constants generated
by T to the default state qd—the capital D in D(q,s)(b) being reminiscent of
this—and coincides with the permitted substitution used in the run of P on
all constants occurring in t.

The interpretation of S(q,s)(b) is similar: Here, we assume that all constants
in t are assigned to qd and in the runs of I all permitted substitutions are
considered which map all constants in t to qd and at most one new constant
to the selecting state qs—the capital S in S(q,s)(b) being reminiscent of this.
The case where the register is assigned to qs does not need to be considered.

To provide further intuition for these components, let us look at an exam-
ple. Assume that T does not contain ε-transitions and exactly one transition
with f ∈ Σ2 on the left-hand side, namely the transition q(vR, f(x, y)) →qA

g(vR, x, q
′(vN , y)), where g ∈ Σ3, q, q

′ are states of T , and x and y are vari-
ables. We refer to this transition by (*). Furthermore, assume that P just read
terms t0 and t1, resulting in states b0 and b1, respectively, and that P is about
to read f ∈ Σ2, i.e., the current configuration of P is f(b0, b1). We consider the
components D(q,s)(b) and S(q,s)(b) in b. Clearly, we have that D(q′,s)(b) = ∅ and
S(q′,s)(b) = ∅ for all q′ 6= q and all s ∈ {qs, qd, ∗} since there is no transition in
T with q′ and f on the left-hand side. In other words, when applied to some
term with head f in state q′, T does not produce output. Also, D(q,s)(b) = ∅
and S(q,s)(b) = ∅ if qA /∈ LA(b) since (*) is the only transition in T with left-
hand side containing f , but T cannot apply (*) if the look-ahead automaton
of T does not accept the term t = f(t0, t1) in state qA. Now, assume that
qA ∈ LA(b). We have D(q,∗)(b) = ∅ and S(q,∗)(b) = ∅ since the left-hand side
of transition (*) contains vR instead of ‘*’. For D(q,qd)(b) we obtain the set
[g(qd, Iset(b0), D(q′,qd)(b1)]I . This is the set of states I can possibly be in after
having read a term t′ produced by T on input t in state q where in the run of
I on some t′ all anonymous constants generated by T are assigned to qd and
the value of the register of T when starting to read t is assigned to qd as well.
Similarly, we have that D(q,qs)(b) = [g(qs, Iset(b0), D(q′,qd)(b1)]I . The only dif-
ference here is that in the run of I the value of the register of T when starting
to read t is assigned to qs, instead of qd. The component S(q,qd)(b) also contains
those states I can possibly be in after having read outputs t′ of T where an
anonymous constant generated by T may be assigned to qs. Therefore, we
have that S(q,qd)(b) = [g(qd, Iset(b0), D(q′,qs)(b1)]I ∪ [g(qd, Iset(b0), S(q′,qd)(b1)]I .
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Note that by distinguishing between the D- and S-components, we can keep
track of where we allow anonymous constants generated by T to be assigned
to qs in runs of I and where we do not allowed such assignments. We finally
note that if T had ε-transitions, the components just described would have
to be augmented since T could also apply ε-transitions, and hence, produce
more output terms. Below, we will therefore consider ε-closures of states of P .

The intuition behind the components of the states of P is formally captured
in Lemma 17.

The ε-Closure. We need one more definition before we can proceed.

Given a transition as in (18), we write tεq′,q′′,b as abbreviation for the term

t′[q′, . . . , q′, q′′, . . . , q′′, D(q0,s0)(b), . . . , D(qr−1,sr−1)(b), Iset(b), . . . , Iset(b)]

and, for k < r, tε,kq′,q′′,b as abbreviation for the term

t′[q′, . . . , q′, q′′, . . . , q′′, D(q0,s0)(b), . . . , D(qk−1,sk−1)(b), S(qk,sk)(b),

D(qk+1,sk+1)(b), . . . , D(qr−1,sr−1)(b), Iset(b), . . . , Iset(b)]

where in both cases si = ∗ if zi = ∗, si = q′ if zi = vR, and si = q′′ if zi = vN .

Given a transition as in (17) and states b0, . . . , bn−1 (they will be the states
assigned to the arguments of f in a run of P ), we write tΣq′,q′′ as abbreviation
for the term

t′[q′, . . . , q′, q′′, . . . , q′′, D(q0,s0)(bj0), . . .

. . . , D(qr−1,sr−1)(bjr−1
), Iset(bi0), . . . , Iset(bil−1

)]

and, for k < r, tΣ,k
q′,q′′ as abbreviation for the term

t′[q′, . . . , q′, q′′, . . . , q′′, D(q0,s0)(bj0), . . .

. . . , D(qk−1,sk−1)(bjk−1
), S(qk,sk)(bjk

), D(qk+1,sk+1)(bjk+1
), . . .

. . . , D(qr−1,sr−1)(bjr−1
), Iset(bi0), . . . , Iset(bil−1

)]

where again in both cases si = ∗ if zi = ∗, si = q′ if zi = vR, and si = q′′ if
zi = vN .

Now we can define the ε-closure of a state of P . Let b ∈ QP . We define a
sequence b0, b1, . . . by induction, where, in the base case, we set b0 = b, and
for i ≥ 0 we define the components of bi+1 as follows:

− Iset(bi+1) = Iset(b), LA(bi+1) = LA(b), seen(bi+1) = seen(b).
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− For every q ∈ QT and s ∈ {qd, qs, ∗}, the set D(q,s)(bi+1) is obtained from
D(q,s)(bi) by adding all states a for which there exists an ε-transition as in
(18) such that qA ∈ LA(bi), z = ∗ iff s = ∗, and a ∈ [tεs,qd,bi

]I .

− For every q ∈ QT and s ∈ {qd, ∗}, the set S(q,s)(bi+1) is obtained from
S(q,s)(bi) by adding all states a for which there exists an ε-transition as in

(18) such that qA ∈ LA(bi), z = ∗ iff s = ∗, and a ∈ [tεs,qs,bi
]I or a ∈ [tε,k

s,qd,bi
]I

for some k < r.

Clearly, there exists an index j such that bj = bj+1 = . . . . We define the
ε-closure of b to be bj for such a j and denote it by b.

The Default and Selecting States of P . The default state qd
P of P is

defined as the ε-closure bd of the following state bd:

− Iset(bd) = [qd]I , LA(bd) = [qd
A]A, seen(bd) = no,

− D(q,s)(b
d) = ∅ for every q ∈ QT and s ∈ {qd, qs, ∗},

− S(q,s)(b
d) = ∅ for every q ∈ QT and s ∈ {qd, ∗}.

Similarly, the selecting state qs
P of P is defined as the ε-closure bs of the

following state bs:

− Iset(bs) = [qs]I , LA(bs) = [qd
A]A, seen(bs) = yes,

− D(q,s)(b
s) = ∅ for every q ∈ QT and s ∈ {qd, qs, ∗},

− S(q,s)(b
s) = ∅ for every q ∈ QT and s ∈ {qd, ∗}.

Transitions of P . In what follows, by abuse of notation we write qd in-
stead of qd

P and qs instead of qs
P . In this way, we can use the same permitted

substitutions for both P and I. Recall that qd and qs are the default and the
selecting states of I, respectively.

For every f ∈ Σn and b0, . . . , bn−1 ∈ QP , the automaton P contains the
transition f(b0, . . . , bn−1) → b where b is defined to be the ε-closure b′ of the
following state b′ determined by the following three conditions.

− Iset(b′) = [f(Iset(b0), . . . , Iset(bn−1))]I , LA(b′)=[f(LA(b0), . . . , LA(bn−1))]A,
seen(b′) = yes if there exists i such that seen(bi) = yes, and seen(b′) = no

otherwise.
− For any q and s, we have a ∈ D(q,s)(b

′) if there exists a Σ-transition as in
(17) such that qA ∈ LA(b′), z = ∗ iff s = ∗, and a ∈ [tΣs,qd]I for every q ∈ QT

and s ∈ {qd, qs, ∗}.
− For any q and s, we have a ∈ S(q,s)(b

′) if there exists a Σ-transition as in

(17) such that qA ∈ LA(b′), (z = ∗ iff s = ∗), and a ∈ [tΣs,qs]I or a ∈ [tΣ,k

s,qd]I
for some k for every q ∈ QT and s ∈ {qd, ∗}.
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Final States of P . The set of final states FP of P contains a state b if
there exists q ∈ IT and a ∈ FI such that

− seen(b) = yes and a ∈ D(q,∗)(b), or
− seen(b) = no and a ∈ S(q,∗)(b).

3.3 Correctness of the Construction

The following proposition states that our construction is correct.

Proposition 15 T (P ) = τ−1
T

(T (I)).

To prove this proposition, we need to prove two lemmas. The first lemma,
which immediately follows from the construction, states that P is complete
and deterministic, and that reachable states are ε-closed.

Lemma 16 For every t and permitted substitution σ, there exists a state b
such that {b} = [σ(t)]P . This state b is ε-closed, i. e., b = b.

The second lemma is more involved, and it is the key for proving Proposi-
tion 15. It formalizes all the intuition behind our construction.

Lemma 17 For every term t ∈ TΣC , b ∈ QP , and permitted substitution σ
such that b ∈ [σ(t)]P the following is true, where we write σ′ =t σ to say that
σ′ is a permitted substitution which coincides with σ on occC(t).

(1) Iset(b) = [σ(t)]I .
(2) LA(b) = [t]A.
(3) The following are equivalent:

(A) seen(b) = yes.
(B) There exists c ∈ occC(t) such that σ(c) = qs.

(4) For every a ∈ QI and q ∈ QT , the following are equivalent:
(A) a ∈ D(q,∗)(b).
(B) There exists t′ ∈ TΣC and σ′ such that σ′ =t σ, σ

′(c) = qd for every
c ∈ occC(t′) \ occC(t), a ∈ [σ′(t′)]I , and q(∗, t) `∗ t′.

(5) For every a ∈ QI , q ∈ QT , and c /∈ occC(t), the following are equivalent:
(A) a ∈ D(q,qd)(b).
(B) There exists t′ ∈ TΣC and σ′ =t σ s.t. σ′(c′) = qd for every c′ ∈

occC(t′) \ occC(t), σ′(c) = qd, a ∈ [σ′(t′)]I , and q(c, t) `∗ t′.
(6) If seen(b) = no, then for every a ∈ QI , q ∈ QT , c /∈ occC(t), the following

are equivalent:
(A) a ∈ D(q,qs)(b).
(B) There exists t′ ∈ TΣC and σ′ s.t. σ′ =t σ, σ

′(c) = qs, a ∈ [σ′(t′)]I ,
and q(c, t) `∗ t′.
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Note that σ(c′) = qd for every c′ ∈ occC(t) since seen(b) = no.
(7) If seen(b) = no, then for every a ∈ QI , q ∈ QT , the following are equiva-

lent:
(A) a ∈ S(q,∗)(b).
(B) There exists t′ ∈ TΣC and σ′ s.t. σ′ =t σ, a ∈ [σ′(t′)]I , and q(∗, t) `∗

t′.
(8) If seen(b) = no, then for every a ∈ QI , q ∈ QT , c /∈ occC(t), the following

are equivalent:
(A) a ∈ S(q,qd)(b).
(B) There exists t′ ∈ TΣC and σ′ s.t. σ′ =t σ, σ

′(c) = qd, a ∈ [σ′(t′)]I ,
and q(c, t) `∗ t′.

Before proving this lemma, we use it to prove Proposition 15.

PROOF. (Proposition 15)

T (P ) ⊆ τ−1
T

(T (I)): Assume that t ∈ T (P ). It follows that there exists a
permitted substitution σ and a final state b ∈ FP such that b ∈ [σ(t)]P . We
consider two cases. First, assume that seen(b) = yes. Then, there exists q ∈ IT

and a ∈ FI such that a ∈ D(q,∗)(b). Lemma 17, 4. implies that there exists
t′ and a permitted substitution σ′ such that q(∗, t) `∗ t′ and a ∈ [σ′(t′)]I ,
and thus, t′ ∈ T (I) since a ∈ FI . This means that t ∈ τ−1

T
(T (I)). Second,

assume that seen(b) = no. Then, there exists q ∈ IT and a ∈ FI such that
a ∈ S(q,∗)(b). By Lemma 17, 7. there exists t′ and a permitted substitution σ′

such that q(∗, t) `∗ t′ and a ∈ [σ′(t′)]I . Thus, t′ ∈ T (I) and t ∈ τ−1
T

(T (I)).

T (P ) ⊇ τ−1
T

(T (I)): Assume that t ∈ τ−1
T

(T (I)). This means that there exists
t′, a ∈ FI , and a permitted substitution σ such that q(∗, t) `∗ t′ for some
q ∈ IT and a ∈ [σ(t′)]I . Let b ∈ [σ(t)]P . Such a b exists and is uniquely
determined due to Lemma 16. We show that b ∈ FP , and thus, t ∈ T (P ).
First, assume that seen(b) = yes. Then, by Lemma 17, 3. and since σ is a
permitted substitution, we have that σ(c) = qd for every c /∈ occC(t). By
Lemma 17, 4., we can conclude that a ∈ D(q,∗)(b). Second, if seen(b) = no,
Lemma 17, 7. implies that a ∈ S(q,∗)(b). In both cases, we get b ∈ FP . 2

PROOF. (Lemma 17) Let t ∈ TΣC , b ∈ QP , and σ be a permitted substitu-
tion such that b ∈ [σ(t)]P . Statements 1., 2., and 3. are easy to verify by the
construction of P . We prove 4.–8. simultaneously. We first show the impli-
cations from left to right by structural induction on t and then establish the
other direction by induction on the length of computations.

“⇒”: Base case. Assume that t ∈ C. We know that b = bd or b = bs. Let
b0 = bd or b0 = bs; both cases can be dealt with in the same way. For b0
the implications hold trivially. By induction on i, we show that they hold
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for bi+1. We concentrate on 8. as it is one of the more interesting cases. The
other inclusions can be shown analogously. We assume that seen(b) = no and
a ∈ S(q,qd)(bi+1). We need to show that there exists t′ and a permitted sub-
stitution σ′ such that σ′ =t σ, σ′(c) = qd, q(c, t) `∗ t′, and a ∈ [σ′(t′)]I . If
a ∈ S(q,qd)(bi), this follows by the induction hypothesis. Otherwise, by def-
inition of S(q,qd)(bi+1), we know that there exists an ε-transition as in (18)

such that qA ∈ LA(bi), z = vR, and a ∈ [tε
qd,qs,bi

]I or a ∈ [tε,k
qd,qd,bi

]I for
some k. First suppose that a ∈ [tεqd,qs,bi

]I . Then, there exist aj ∈ D(qj ,sj)(bi)

such that a ∈ [t′[qd, . . . , qd, qs, . . . , qs, a0, . . . , ar−1, Iset(bi), . . . , Iset(bi)]]I . Let
c′ /∈ occC(t)∪ {c} and ci = ∗ if zi = ∗, ci = c if zi = vR, and ci = c′ if zi = vN .
Define σ′(c′) = qs and σ′(c′′) = qd for every c′′ 6= c′. Note that σ′ =t σ and
σ′(c) = qd. Using the induction hypothesis on i, it is easy to verify that there
exist t′0, . . . , t

′
r−1 such that qj(cj, t) `

∗ t′j, aj ∈ [σ′(t′j)]I , and the t′j are chosen in
such a way that new constants generated in the computation qj(cj, t) `

∗ t′j are
different from c, c′, the constants occurring in t, and those that are generated
in qj′(cj′, t) `

∗ t′j′ for j ′ 6= j. Note that to establish the existence of the t′j with
the above properties, we can in fact use σ′ as the permitted substitution for
every j. Thus, we have q(c, t) `∗ t′[c, . . . , c, c′, . . . , c′, t′0, . . . , t

′
r−1, t, . . . , t] := t′′

and a ∈ [σ′(t′′)]I . The case where a ∈ [tε,k
qd,qd,bi

]I for some k can be dealt with
in an analogous fashion. This concludes the proof of the base case.

What we have basically shown here is that if the implications hold for some
state, then they hold for the ε-closure of this state. The fact that t is an
anonymous constant was only used to show the implication for b0.

Induction step. Assume that t = f(t0, . . . , tn−1) and that the inclusions hold
true for the subterms ti of t. Let bi be the unique element with bi ∈ [σ(ti)]P .
Similar to the base case, one can show that the inclusions hold for b′ where b′

is defined as in the definition of transitions of P . Moreover, from the proof of
the base case it follows that the inclusions stay true when taking the ε-closure
of a state. Thus, they hold true for b = b′.

“⇐”: We prove 4.–8. simultaneously by induction on the length of computa-
tions. For computations of length zero nothing is to show since the conditions
in (B) are void. In the induction step, we again concentrate on 8; the other
cases can be shown analogously. Assume that seen(b) = no and let c /∈ occC(t).
For every t′′ ∈ TΣC , a ∈ QI , and permitted substitution σ′ such that σ′ =t σ,
σ′(c) = qd, a ∈ [σ′(t′′)]I , and q(c, t) `∗ t′′ we need to show that a ∈ S(q,qd)(b).
We distinguish two cases depending on whether the first transition T applied
in q(c, t) `∗ t′′ is a Σ- or ε-transition.

T is a Σ-transition. Assume that T is a Σ-transition of the form (17) where
z = vR. We use c′ ∈ C \ (occC(t) ∪ {c}) as the new constant generated by T
(in case T is generative). We have that t = f(t0, . . . , tn−1) for some ti ∈ TΣC .
Let bi be the uniquely determined element in [σ(ti)]P = [σ′(ti)]P . Then, we
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know that b is b′ where b′ is defined as in the definition of transitions. After
applying T to q(c, t) we obtain

t′[c, . . . , c, c′, . . . , c′, q0(c0, tj0), . . . , qr−1(cr−1, tjr−1
), ti0 , . . . , til−1

]

where ci = ∗ if zi = ∗, ci = c if zi = vR, and ci = c′ if zi = vN . Let t′0, . . . , t
′
r−1

be the terms such that qi(ci, tji
) `∗ t′i and

t′′ = t′[c, . . . , c, c′, . . . , c′, t′0, . . . , t
′
r−1, ti0 , . . . , til−1

].

Since a ∈ [σ′(t′′)]I , there exist ai ∈ QI such that ai ∈ [σ′(t′i)]I and

a ∈ [σ′(t′[c, . . . , c, c′, . . . , c′, a0, . . . , ar−1, [σ
′(ti0)]I , . . . , [σ

′(til−1
)]I ]]I .

By Lemma 17, 1. and since σ′ and σ coincide on occC(t), we have Iset(bij ) =
[σ′(tij )]I . Lemma 17, 2. ensures that qA ∈ LA(b′) = LA(b) = [t]A. We distin-
guish two cases.

First, assume that σ′(c′) = qs, and thus, all other anonymous constants are
mapped to qd. It is easy to check that σ′ meets the conditions for D(qi,si)(bji

)
w.r.t. tji

. Thus, the induction hypothesis on the length of computations yields
ai ∈ D(qi,si)(bji

). Now, it follows that a ∈ [tΣqd,qs]I , and thus, a ∈ S(q,qd)(b
′) ⊆

S(q,qd)(b′) = S(q,qd)(b).

Second, assume that σ′ is a permitted substitution such that σ′(c′′) = qd

for every c′′ ∈ occC(t) ∪ {c, c′}. We consider two subcases. First, suppose
that there exists k and c′′ ∈ occC(t′k) such that σ′(c′′) = qs. It follows that
c′′ /∈ occC(t) ∪ {c, c′}, and thus, c′′ was newly generated in qk(ck, tjk

) `∗ t′k.
Consequently, c′′ does not occur in t′i for i 6= k. It is again easy to check that
σ′ meets the conditions for D(qi,si)(bji

) w.r.t. tji
for every i 6= k and S(qk,sk)(bjk

)
w.r.t. tjk

. Now, the induction hypothesis on the length of computations yields

that ai ∈ D(qi,si)(bji
) for every i 6= k and ak ∈ S(qk,sk)(bjk

). Thus, a ∈ [tΣ,k

qd,qs]I .

Consequently, a ∈ S(q,qd)(b
′) ⊆ S(q,qd)(b′) = S(q,qd)(b). If there is no k and c′′ ∈

occC(t′k) such that σ′(c′′) = qs, then one can similarly show that a ∈ [tΣ,k

qd,qs]I
even for every k, and thus, a ∈ S(q,qd)(b).

T is an ε-transition. This case can be dealt with very similar to the case for
Σ-transitions. Instead of using the definition of transitions of P one uses the
definition of the ε-closure and the fact that b is ε-closed by Lemma 16. 2

4 The Tree Transducer-based Protocol Model

In this section, we introduce our protocol and intruder model. The basic
assumptions of our model coincide with those for decidable models of non-
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looping protocols: First, we analyze protocols with respect to a finite number
of receive-send actions, and in particular, a finite number of sessions. Second,
the intruder is based on the Dolev-Yao intruder. He can derive new messages
from known messages by decomposition, decryption, composition, encryption,
and hashing. We do not put a bound on the size of messages. As in (Amadio
et al., 2002), we assume keys to be atomic messages; in (Rusinowitch and Tu-
ruani, 2001; Millen and Shmatikov, 2001; Boreale, 2001) they may be complex
messages.

The main difference between the model presented here and models for non-
looping protocols is the way receive-send actions are described—instead of
single rewrite rules, we use TTAC’s. These transducers have two important
features necessary to model recursive receive-send actions, but missing in de-
cidable models for non-looping protocols: First, they allow to apply a set
of rewrite rules recursively to a term. Second, they allow to generate new
constants—a feature not necessary for non-looping protocols when analyzed
w.r.t. a finite number of receive-send actions.

We now provide the formal definition of our tree transducer-based model by
defining messages, the intruder, protocols, and attacks.

4.1 Messages

The definition of messages we use here is rather standard, except that we allow
an infinite number of (anonymous) constants. As mentioned, we assume keys
to be atomic.

More precisely, messages are defined as terms over the signature (ΣA, C) with
anonymous constants. The set C is some countably infinite set of anonymous
constants, which in this paper will be used to model session keys (Section 7.1).
The finite signature ΣA is defined relatively to a finite set A of constants, the
set of atomic messages, which may for instance contain principal names and
(long-term) keys. It also contains a subset K of public and private keys which is
equipped with a bijective mapping ·−1 assigning to a public (private) key k ∈ K
its corresponding private (public) key k−1 ∈ K. Now, ΣA denotes the (finite)
signature consisting of the constants from A, the unary symbols hasha (keyed
hash) and enc

s

a (symmetric encryption) for every a ∈ A, the unary symbol
enc

a

k (asymmetric encryption) for every k ∈ K, and the binary symbol 〈〉
(pairing). Instead of 〈〉(t, t′) we write 〈t, t′〉. The term hasha(m) shall represent
the keyed hash of m under the key a plus m itself. One could make this explicit
by writing 〈m, hash(〈a,m〉)〉 instead of hasha(m). However, checking whether
a message is of the form 〈m, hash(〈a,m〉)〉 for some message m requires the
non-linear term 〈x, hash(〈a, x〉)〉, where x is a variable. To avoid such non-
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linear terms we use hasha(m), but allow the intruder (see below) to derive m
from hasha(m). The set of messages over (ΣA, C) is denoted by M = TΣA

(C).

Note that anonymous constants are not allowed as keys. It is an open prob-
lem whether the decision problem Attack (see Section 4.4) would still be
decidable otherwise.

4.2 The Intruder

As in the case of models for non-looping protocols, our intruder model is
based on the Dolev-Yao intruder (Dolev and Yao, 1983). That is, an intruder
has complete control over the network and can derive new messages from his
current knowledge by composing, decomposing, encrypting, decrypting, and
hashing messages. We do not impose any restrictions on the size of messages.

The (possibly infinite) set of messages d(S) the intruder can derive from some
set S ⊆ M is the smallest set satisfying the following conditions:

(1) S ⊆ d(S);
(2) if 〈m,m′〉 ∈ d(S), then m,m′ ∈ d(S) (decomposition);
(3) if encsa(m) ∈ d(S) and a ∈ d(S), then m ∈ d(S) (symmetric decryption);
(4) if encak(m) ∈ d(S) and k−1 ∈ d(S), then m ∈ d(S) (asymmetric decryp-

tion);
(5) if hasha(m) ∈ d(S), then m ∈ d(S) (obtaining hashed messages);
(6) if m,m′ ∈ d(S), then 〈m,m′〉 ∈ d(S) (composition);
(7) if m ∈ d(S) and a ∈ A ∩ d(S), then enc

s

a(m) ∈ d(S) (symmetric encryp-
tion);

(8) if m ∈ d(S) and k ∈ K ∩ d(S), then enc
a

k(m) ∈ d(S) (asymmetric en-
cryption);

(9) if m ∈ d(S) and a ∈ A ∩ d(S), then hasha(m) ∈ d(S) (keyed hash).

Let an(S) denote the closure of S under 2.–5., and syn(S) the closure of S
under 6.–9.

It is well-known that d(S) can be obtained by first applying an to S and to
the result applying syn. This is because we employ atomic keys; for complex
keys this does not hold (see, e.g., (Paulson, 1997; Monniaux, 1999)):

Lemma 18 For every S ⊆ M,

d(S) = syn(an(S)) . 2

We note that although principals have the ability to generate new (anony-
mous) constants, as they are defined in terms of TTAC’s, for the intruder
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adding this ability is not necessary since it would not increase his power to
attack protocols (see also Section 4.4).

4.3 Protocols

Protocols are described by sets of principals and every principal is defined
by a sequence of receive-send actions, which in a protocol run are performed
one after the other. Every receive-send action is specified by a certain TTAC,
which we call message transducer.

Definition 19 A message transducer T is a TTAC over (ΣA, C).

Roughly speaking, a principal is defined as a sequence of message transducers.

Definition 20 A (TTAC-based) principal Π is a tuple

((T 0, . . . ,T n−1), I)

consisting of a sequence (T 0, . . . ,T n−1) of message transducers and an n-ary
relation I ⊆ I0 × · · · × In−1 where Ii denotes the set of initial states of T i.

The single message transducers T i in the definition of Π are called receive-
send actions. In a protocol run, Π performs the receive-send actions one af-
ter the other. More precisely, at the beginning of a protocol run, a tuple
(q0, . . . , qn−1) ∈ I is chosen non-deterministically where qi will be the initial
state of T i in the current run. Now, if in the protocol run the first message Π
receives is m0, then Π returns some message m′

0 with (m0, m
′
0) ∈ τT 0(q0). Then,

on receiving the second message, say m1, Π returns m′
1 with (m1, m

′
1) ∈ τT 1(q1),

and so on. By fixing the initial states at the beginning, we model that Π can
convey (a finite amount of) information from one receive-send action to an-
other. For example, if q0 encodes that Π expects to talk to Bob, then q1 might
describe that in the second message Π expects to see Bob’s name again.

A protocol is defined to be a finite family of principals plus—since we are inter-
ested in attacks on protocols—an initial intruder knowledge and information
about which receive-send actions are to be thought of as being “challenge”
actions:

Definition 21 A (TTAC-based) protocol P is a tuple ({Πi}i<n,S, C) where

− {Πi}i<n is a family of n (TTAC-based) principals, and
− S ⊆ M is a finite set, the initial intruder knowledge,
− C ⊆ {0, . . . , n− 1} is the set of challenge indices.

The last action of principal i will be called a challenge output action if i ∈ C.
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(The use of challenge output actions will be explained in the next section.)

The class of protocols that can be specified according to Definition 21 can
roughly be characterized as follows: In every receive-send action, principals
can perform recursive computations, which, since described as TTAC, allow
to recursively carry out linear checks on input messages (i.e., checks that can
be expressed in terms of matching against linear terms). For example, in one
receive-send action a principal can go through a list of requests and check the
format of every request by matching against a linear term. In the recursive
process principals can also produce an unbounded number of fresh nonces
(anonymous constants) and build complex output messages, e.g., a list of
certificates containing sessions keys (freshly generated anonymous constants)
or a message containing deeply nested encryptions. Furthermore, as explained
above, principals can convey a finite amount of information from one receive-
send action to the next. In Section 7, we illustrate the kind of protocols that
can be modeled by examples.

4.4 Attacks

In an attack on a protocol, the intruder, who has complete control over the
communication network, interleaves the receive-send actions of the principals
in some way (i.e., determines a total ordering on the receive-send actions),
and tries to produce inputs for the principals such that from the correspond-
ing outputs and his initial knowledge he can derive some secret, i.e., some
message not supposed to fall into the hands of the intruder. Such a secret can
for example be a session key or some secret message. Thus, one can check
whether a protocol preserves secrecy. One can also check some weak kind of
authentication. For example, the secret may be some auxiliary message indi-
cating that a principal, say P , completed a session with an instance of another
principal, say P ′, which does not exist in the specified protocol model. Now, if
the intruder gets to see the secret message, this means that the authentication
property is violated. Stronger forms of authentication could also be checked if
the absence of certain receive-send actions would be tested. However, authen-
tication is not the main focus of the present work and we therefore will not
further investigate authentication here.

In the definition of attacks we make use of challenge output actions (see Defini-
tion 21). In the interleaving of receive-send actions determined by the intruder,
we require that the last receive-send action (and only this action) is a challenge
output action. This action determines the secret the intruder tries to derive.
That is, the output of this action is not added to the intruder’s knowledge but
it is presented to him as a challenge, i.e., a message to be derived.
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The use of challenge output actions allows to determine secrets dynamically,
depending on the protocol run. This is for example needed when asking whe-
ther the intruder is able to derive a session key (an anonymous constant,
which may change from one protocol run to another) generated by a key
distribution server. Alternatively and equivalently (to dispense with challenge
output actions), one could ask whether the intruder can derive an a priori fixed
atomic message, say secret, which is encrypted by an anonymous constant
(the session key): The encrypted secret can be derived by the intruder iff
the intruder knows the anonymous constant used to encrypt secret. However,
since in general we do not allow anonymous constants as keys (see Section 4.1
and the conclusion), we find the use of challenge output actions more elegant
than introducing special kinds of messages with anonymous constants as keys.
Moreover, challenge output actions are somewhat related to the way security
is defined in computational models for key distribution protocols where at the
end of an attack, the intruder is presented a string for which he needs to decide
whether it is an actual session key or just some random string (Bellare and
Rogaway, 1995).

We remark that the way attacks are defined here allows to ask whether the
intruder can derive a message that belongs to some pre-defined regular tree
language. In most models for non-looping protocols this is not possible (see,
however, (Truderung, 2005a; Genet and Klay, 2000; Monniau, 1999)).

Definition 22 Let P = ({Πi}i<n,S, C) be a protocol with Πi = ((T i
0, . . . ,

T
i
ni−1), Ii) and Ii ⊆ I i

0 × · · · × I i
ni−1 for i < n.

An attack on P is a tuple

(O,<, ψ)

consisting of

− a non-empty set O ⊆ {(i, j) | i < n, j < ni} of indices of receive-send
actions triggered during an attack,

− a total ordering < on O, the interleaving of the receive-send actions, and
− a mapping ψ assigning to every (i, j) ∈ O a tuple ψ(i, j) = (qi

j, m
i
j, m

′i
j)

and satisfying the following conditions:

(1) For every (i, j) ∈ O, if (i, j) ∈ O, then (i, j ′) ∈ O and (i, j ′) < (i, j) for
every j ′ < j.

(2) Let (i, j) be the greatest element of O w.r.t. <. Then, for each (i′, j ′) ∈ O,
the action T

i′

j′ is a challenge output action iff (i, j) = (i′, j ′).
(3) Let i < n and j maximal with (i, j) ∈ O. Then there exist qi

j+1, . . . , q
i
ni−1

such that (qi
0, . . . , q

i
ni−1) ∈ Ii,

(4) For each (i, j) ∈ O it holds that mi
j, m

′i
j ∈ M and (mi

j, m
′i
j) ∈ τ

T
i
j(q

i
j
).
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(5) For each (i, j) ∈ O it holds that (occC(m
′i
j) \ occC(m

i
j)) ∩ occC(S

i
j) = ∅

where Si
j = S ∪ {m′i

′

j′ | (i′, j ′) < (i, j)}.
(6) For every (i, j) ∈ O it holds that mi

j ∈ d(Si
j).

An attack is called successful if the last receive-send action, the challenge
output action, say with index (i, j) ∈ O, returns some c such that c ∈ d(S i

j) ∩
(A ∪ C).

Note that 5. ensures that new anonymous constants generated in one receive-
send action are also new w.r.t. the knowledge of the intruder before this action
is performed. Note also that in 6. the set d(S i

j) is the intruder knowledge before
performing the receive-send action in step (i, j).

The decision problem we are interested in is:

Attack. Given a protocol P , decide whether there exists a successful attack
on P .

If there is no successful attack on a protocol, we say that the protocol is secure.

As mentioned above, extending the intruder by allowing him to generate new
constants does not increase his ability to attack protocols. The following re-
mark makes this more precise.

Remark 23 If the initial intruder knowledge contains at least one anonymous
constant, then there exists an attack on a protocol P iff there exists an attack
on P in which the intruder may generate new anonymous constants.

PROOF. Formally, an intruder which may generate anonymous constants is
an intruder whose initial knowledge contains an infinite number of anonymous
constants (in addition to his ordinary initial knowledge). We argue that one
anonymous constant, say cI , is enough.

The reason is that TTAC’s cannot check anonymous constants for disequality.
If (m,m′) belongs to the transduction of a TTAC, then so does (σ(m), σ(m′))
where σ maps anonymous constants in m to some arbitrary constant c′ /∈
occC(m′) \ occC(m), i. e., some constant not newly generated. This means, in
particular, if (mi

j, m
′i
j) is part of an attack, then so is (σ(mi

j), σ(m′i
j)) where

σ maps anonymous constants from the initial intruder knowledge in mi
j to cI .

Observe that if mi
j can be derived by the intruder, then so can σ(mi

j). 2

Since in models for non-looping protocols disequality tests between messages
are usually not possible as well (an exception is (Durgin et al., 2004)), in
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these models extending the intruder with the ability to generate new constants
would also not increase his power to attack protocols.

5 The Decidability Result

The main result of this section is the following:

Theorem 24 For TTAC-based protocols, Attack is decidable.

To prove this theorem it obviously suffices to show that the following problem
is decidable.

InterleavingAttack. Given a finite set S ⊆ M (the initial intruder knowl-
edge), a sequence T 0, . . . ,T l−1 of message transducers (the interleaving of
receive-send actions) with Ti = (Qi, Ii,Ai, Γi) for i < l, decide whether there
exist messages mi, m

′
i ∈ M, i < l, such that

(1) (mi, m
′
i) ∈ τT i

for every i < l,
(2) (occC(m

′
i) \ occC(mi)) ∩ occC(Si) = ∅ for every i < l,

(3) mi ∈ d(Si) for every i < l, and
(4) m′

l−1 ∈ d(Sl−1) ∩ (A ∪ C),

where Si = S ∪ {m′
0, . . . , m

′
i−1} is the intruder’s knowledge before the ith

receive-send action is performed.

We write (S,T 0, . . . ,T l−1) ∈ InterleavingAttack if all the above condi-
tions are satisfied.

The proof of the decidability of InterleavingAttack proceeds in two steps.
First, we show that the intruder can be simulated by a TTAC (see Sec-
tion 5.1). Then, we reduce the problem InterleavingAttack to the problem
IteratedPreImage (Section 5.2), which we know is decidable.

5.1 Derive is TTAC Realizable

We wish to show that the messages in d({m}) for some message m can be
produced by a TTAC. More precisely, we will construct a TTAC T der such
that τT der

(m) = d({m}) for every message m.

We first define what we call the key discovery automaton which is used as
look-ahead in T der.
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5.1.1 Key Discovery

The key discovery automaton D is a complete and deterministic WTAAC
containing all information about which keys can be accessed in a given mes-
sage. More precisely, a state of the key discovery automaton is a function
2A → 2A and the automaton is set up in a way such that the state [m]D
the automaton is in after reading the message m—note that since D is com-
plete and deterministic, [m]D = {ϕ} for some function ϕ—has the following
property: [m]D(K) is the set of atoms that may be derived from K and m,
i.e., [m]D(K) = an({m} ∪ K) ∩ A for every K ⊆ A and message m. In the
following, it is argued that this is indeed possible, that is, we will construct
D with the desired property. The set of all functions 2A → 2A, that is, the
state set of D, is denoted QD. We note that the cardinality of QD is double
exponential in the cardinality of A.

The default state of D is the identity mapping. The transitions of D are
defined as follows. For every a ∈ A, D contains a transition

a→ (K 7→ K ∪ {a})

for every K ⊆ A.

For every a ∈ A, k ∈ K, and d′ ∈ QD, the WTAAC D contains transitions

enc
s

a(d
′) → d ,

enc
a

k(d
′) → d ,

hasha(d
′) → d ,

where d is determined by the following table:

left-hand side condition on K d(K)

enc
s

a(d
′) a ∈ K d′(K)

enc
s

a(d
′) a /∈ K K

enc
a

k(d
′) k−1 ∈ K d′(K)

enc
a

k(d
′) k−1 /∈ K K

hasha(d
′) no condition K .

Finally, for every d′, d′′ ∈ QD, the WTAAC D contains a transition

〈d′, d′′〉 → d (19)

where, for every K ⊆ A, d(K) is the smallest set such that

− K ⊆ d(K),
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− if K ′ ⊆ d(K), then d′(K ′) ⊆ d(K),
− if K ′ ⊆ d(K), then d′′(K ′) ⊆ d(K).

The definition of (19) is more involved than the definition of the other transi-
tions since in a message of the form 〈m,m′〉 keys in m could be used to obtain
new keys in m′ (and vice versa) and these keys can in turn be used to obtain
new keys in m, which can in turn be used to obtain new keys in m′, and so
on. Therefore d(K) is defined by a least fixed point.

The correctness of the construction is asserted in the following lemma:

Lemma 25 For every message m ∈ M and K ⊆ A we have that

[m]D(K) = an({m} ∪K) ∩ A .

PROOF. The proof is straightforward and can be carried out by induction
on the structure of m, using the definition of an(·). 2

5.1.2 The Transducer T der

The TTAC T der is based on a simple idea, which is motivated by Lemma 18.
To describe it, we need some more notation. For a set K ⊆ A, let Σ(K) be
the signature defined by

Σ(K) = {encs
a, hasha | a ∈ K} ∪ {enca

k | k ∈ K ∩ K} .

Using this notation, Lemma 18 implies:

Lemma 26 Let m,m′ ∈ M. Then the following statements are equivalent:

(A) m′ ∈ d({m}).
(B) m′ is of the form t[m0, ...., mn−1] where the mi are obtained by successive

decryptions and splittings from m, and the keys in t are also obtainable
by successive decryptions and splittings from m, i.e., there exists a linear
term t(x0, . . . , xn−1) ∈ TΣ(an({m})∩A)(X) such that m′ = t[m0, . . . , mn−1]
where mi ∈ an({m}) for every i < n.

The TTAC T der has a distinguished initial state qI and, for each K ⊆ A,
there are two states (qS, K) and (qA, K), the indices being reminiscent of
“syn” and “an”. The transducer works in three phases on a given message
m. The first phase is just one step and simply determines the set K of keys
that can be discovered from the given message m, that is, it determines K =
an{m} ∩ A. In the second phase, the term t from above is generated, that is,
non-deterministically a message mS is constructed which can be written as
t[m,m,m, . . . , m] where t(x0, . . . , xr−1) is a linear term from TΣ(an({m})∩A)(X).

37



In the third phase, every copy of m in t[m, . . . ,m] is (non-deterministically)
replaced by some message from an({m}). The above lemma guarantees that
T der exactly computes the messages derivable from m.

To be more precise, we have the following transitions in T der. Since for T der

no register is used, in what follows we write s(t) instead of s(∗, t) where s is
a state of T der, i.e., s = qI , s = (qS, K), or s = (qA, K) for some K ⊆ A.

For the first phase, for every d ∈ QD, T der contains the transition

qI(x) →
d (qS, d(∅))(x)

For the second phase, for every K ⊆ A, T der contains the following transitions:

(qS, K)(x) → 〈(qS, K)(x), (qS, K)(x)〉

(qS, K)(x) → enc
s

a((qS, K)(x)) for a ∈ K

(qS, K)(x) → enc
a

k((qS, K)(x)) for k ∈ K ∩ K

(qS, K)(x) → hasha((qS, K)(x)) for a ∈ K

(qS, K)(x) → (qA, K)(x)

For the third phase, for every K ⊆ A, T der contains the following transitions:

(qA, K)(x) → x

(qA, K)(x) → a for a ∈ K

(qA, K)(〈x0, x1〉) → (qA, K)(x0)

(qA, K)(〈x0, x1〉) → (qA, K)(x1)

(qA, K)(encsa(x)) → (qA, K)(x) for a ∈ K

(qA, K)(encak(x)) → (qA, K)(x) for k−1 ∈ K ∩ K

(qA, K)(hasha(x)) → (qA, K)(x) for a ∈ A

Writing τder instead of τT der
, we can state:

Lemma 27 τder(m) = d({m}) for every m ∈ M.
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PROOF. From the construction of T der, it is easy to see that ifm is a message
with K = an({m}) ∩ A and m′ is such that qI(m) `∗ m′, then

qI(m) ` (qS, K)(m) `∗ t[(qS , K)(m), . . . , (qS, K)(m)]

`∗ t[(qA, K)(m), . . . , (qA, K)(m)] `∗ t(m0, . . . , mn−1) = m′ (20)

where t ∈ TΣ(an({m})∩A)(X) and mi ∈ an({m}) for every i < n. This shows
that τder(m) ⊆ d({m}).

Similarly, it is easy to see that for every choice of t and m as above, one has
(20) with K = an({m}) ∩ A, which implies d({m}) ⊆ τder(m). 2

Note that even if we allowed the intruder to generate anonymous constants,
we could model such an intruder by a TTAC since TTAC’s can generate
anonymous constants. More precisely, one could simulate the intruder by a
composition of two TTAC’s: The first TTAC copies the input into the output
and adds an arbitrary number of new anonymous constants to the output.
This can be achieved by using ε-transitions. The second transducers works
just as the transducer described above. Note that this transducer obtains the
original message together with the constants generated by the first transducer
as input. However, as stated in Remark 23, since the intruder is not more
powerful if he can generate anonymous constants, it suffices to model the
simpler intruder.

5.2 Reduction to the Iterated Pre-image Word Problem

We now reduce InterleavingAttack to IteratedPreImage by formu-
lating an attack as a composition of transducers. We first need to introduce
two variants of T der and one variant of T i, mainly to pass on the intruder’s
knowledge from one transducer to the next.

The first variant of T der, called T
copy
der , copies its input to the first component

of a pair and simulates T der on the second component, i.e.,

τTcopy

der
= {(m, 〈m,m′〉) | m′ ∈ d({m})}.

The TTAC T
copy
der can be derived from T der in a straightforward way. We equip

T der with an additional state, say qcopy
I , and declare it to be the initial state

of T
copy
der . In addition, we add the following transition:

qcopy
I (∗, x) → 〈x, qI(∗, x)〉.

Recall that qI is the initial state of T der. For ease in notation, let τ copy
der = τTcopy

der
.
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The second variant, called Tchall
der , expects an input of the form 〈m,m′〉, copies

the second component into the output and simulates T der on the first com-
ponent. We call this transducer the challenge transducer since it receives in
the second component the challenge and tries to derive it from the first com-
ponent, the intruder’s knowledge. Again, this variant of T der can easily be
obtained from T der. We add one more state, say qchall

I , which is the initial
state of Tchall

der , and we also add the following transition:

qchall
I (∗, 〈x0, x1〉) → 〈qI(∗, x0), x1〉.

Let τ chall
der = τTchall

der
.

Finally, we introduce a variant T̂ i of T i to i) pass on the intruder’s knowledge
and ii) to satisfy condition 2. in the definition of InterleavingAttack, i.e.,
anonymous constants generated in a receive-send action are different from the
anonymous constants generated so far. To this end, T̂ i only accepts pairs as
input, copies the first component into the output (this component stands for
the intruder’s knowledge) and simulates T i on the second component (this
component corresponds to the input for T i). Obviously, T̂ i defined in this
way accomplishes i). But it also achieves ii) since by our definition of the
computations of a TTAC, anonymous constants generated by a transducer
are different from those that occur in the input. It is again straightforward to
obtain T̂i from T i: We add one state q to the set of states of T i and declare
it to be the (only) initial state of T̂ i, and for every initial state qI of T i, we
add the transition

q(∗, 〈x0, x1〉) → 〈x0, qI(∗, x1)〉.

Let τ̂i = τ
T̂i

.

We also need the tree language

R = {〈a, a〉 | a ∈ A} ∪ {〈c, c〉 | c ∈ C}

which, using Example 1, can easily be seen to be TAAC recognizable. For a
finite set S = {u0, . . . , un−1} of messages let mS be the message defined by

mS = 〈u0, 〈u1, 〈· · · 〈un−2, un−1〉 · · ·〉〉〉

(the order of the ui
′s does not matter); this makes sure that we have d(S) =

d(mS). Finally, let

τ = τ chall
der ◦ τ̂l−1 ◦ τ

copy
der ◦ τ̂l−2 ◦ τ

copy
der ◦ · · · ◦ τ copy

der ◦ τ̂0 ◦ τ
copy
der .

Then, by construction, we obtain the following characterization for the prob-
lem InterleavingAttack.
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Lemma 28 For every S and T 0, . . . ,T l−1 as in the definition of the problem
InterleavingAttack, we have

(S,T0, . . . ,Tl−1) ∈ InterleavingAttack iff mS ∈ τ−1(R) .

Together with Corollary 12 this immediately implies:

Theorem 29 InterleavingAttack is decidable.

This concludes the proof of Theorem 24. 2

By reduction from the intersection problem for top-down tree automata—
given a sequence of top-down tree automata A1, . . . , An, decide whether the
intersection L(A1)∩· · ·∩L(An) is empty—, which is known to be EXPTIME-
complete (Seidl, 1994), it is easy to see that the problems Attack and
InterleavingAttack are EXPTIME-hard since TTACs can simulate such
tree automata and by composing TTACs one can simulate the intersection of
such automata. Since our decision procedure for the iterated pre-image word
problem is non-elementary, this is also the case for the problems Attack and
InterleavingAttack. Hence, it remains to find a tight complexity bound
for these problems.

6 Extensions of the Model and Undecidability Results

As mentioned in Section 4, the basic assumptions of our tree transducer-
based protocol model and models for non-looping protocols coincide (finite
number of receive-send actions, Dolev-Yao intruder without a bound on the
size of messages). In fact, in the TTAC-based protocol model as introduced in
Section 4, many non-looping protocols can be analyzed with the same precision
as in decidable models for non-looping protocols with atomic keys (see, e.g.,
(Amadio et al., 2002)). More precisely, this is the case for protocols where a)
the receive-send actions can be described by rewrite rules with linear left-hand
side, since TTAC’s can simulate all such rewrite rules, and b) only a finite
amount of information needs to be conveyed from one receive-send action to
the next. This includes for instance many of the protocols in the Clark-Jacobs
library (Clark and Jacob, 1997). (To illustrate this, in Section 7.2 we provide a
formal TTAC-based model of the Needham-Schroeder Public Key Protocol.)

However, some features present in decidable models for non-looping protocols
are missing in the TTAC-based protocol model:

(1) equality tests for messages of arbitrary size, which are possible when
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a) left-hand sides of rewrite rules may be non-linear (this corresponds to
allowing non-linear left-hand sides in transitions of TTAC) or

b) arbitrary messages can be conveyed from one receive-send action to
another and can then be compared with other messages (Amadio et al.,
2002; Rusinowitch and Turuani, 2001; Millen and Shmatikov, 2001;
Boreale, 2001);

(2) complex keys, i.e., keys that may be arbitrary messages (Rusinowitch and
Turuani, 2001; Millen and Shmatikov, 2001; Boreale, 2001); and

(3) relaxing the free term algebra assumption by adding the XOR operator
(Chevalier et al., 2003a; Comon-Lundh and Shmatikov, 2003) or Diffie-
Hellman exponentiation (Chevalier et al., 2003b).

The main result of this section is that these features cannot be added without
losing decidability.

Our undecidability results show that if one equality test can be performed then
Attack is undecidable. While in 1. the equality test is explicitly present, in
2. and 3. implicit equality tests are possible. In the following subsections, the
undecidability results are presented in detail.

We remark that when an intruder is allowed to use an unbounded number
of copies of a principal to perform an attack, i.e., the protocol is analyzed
w.r.t. an unbounded number of sessions—and thus, receive-send actions—,
then Attack is undecidable as well. This is not surprising, since the same is
true for models of non-looping protocols (see, e.g., (Amadio et al., 2002)).

6.1 Encoding Post’s Correspondence Problem

We start with an undecidability result which is purely automata-theoretic. It
will then be used over and over again to obtain the protocol-related undecid-
ability results. More precisely, we show how to model Post’s Correspondence
Problem (PCP) by composing transducers.

Recall that an instance of PCP is composed of two sequences α = α1, . . . , αn

and β = β1, . . . , βn of words over a two-letter alphabet Σ. The problem is to
determine whether there exists a sequence u = i0, . . . , ik of indices such that
αi0 . . . αik = βi0 . . . βik . Such a sequence of indices is called a feasible solution;
any sequence is just called a solution. The two words are denoted α(u) and
β(u), respectively.

We will encode a word α = a0 . . . al−1 ∈ Σ∗ with ai ∈ Σ by the term
〈a0, 〈a1, . . . , 〈al−1,⊥〉 · · ·〉, which we denote [α]. Here, ⊥ is a new constant.
We will also encode indices i ∈ {1, . . . , n}. To this end, let b be a new con-
stant and let bi denote the word b · · · b of length i. Then, i is encoded by [bi],
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which, for convenience, is also denoted [i]. If u = i0i1 . . . il is a solution, we
write [u] for 〈[i0], 〈[i1], . . . , 〈[il],⊥〉 . . .〉〉.

In addition to b, we will use the new constants b1, b2, and secret. Thus the set
of atomic messages is defined to be A = Σ ∪ {b, b1, b2,⊥, secret}.

We next describe transducers T 0, T 1, and T 2 such that an instance of the
PCP as above has a feasible solution if and only if in τT 2

(τT 1
(τT 0

(b))) there
exists a term 〈t, t〉.

Transducer T 0 generates the encoding of any solution and therefore has the
following transitions:

qI(b) → 〈[i], q(b)〉 for i ∈ {1, . . . , n},

q(b) → 〈[i], q(b)〉 for i ∈ {1, . . . , n},

q(b) → ⊥ .

Transducer T 1 consists of one transition only and doubles every term:

qI(〈x0, x1〉) → 〈〈x0, x1〉, 〈x0, x1〉〉 .

In the above transition we write 〈x0, x1〉 instead of x to make sure that the
list of indices received from T 0 is not empty.

Transducer T 2 takes any pair of encoded solutions and replaces the lists by
the concatenation of the corresponding words (encoded as described above).
There is one transition which starts the substitution/concatenation process in
each component:

qI(〈x, x
′〉) → 〈qα(x), qβ(x′)〉 .

In addition, for every i ∈ {1, . . . , n} with αi = a0 · · ·al−1 and βi = b0 · · · bm−1,
there are transitions for the substitution/concatenation process:

qα(〈[i], x〉) → 〈a0, 〈a1, . . . , 〈al−1, qα(x)〉 · · ·〉 ,

qβ(〈[i], x〉) → 〈b0, 〈b1, . . . , 〈bm−1, qβ(x)〉 · · ·〉 .

Finally, there are two transitions to stop the substitution/concatenation pro-
cess:

qα(⊥) → ⊥ ,

qβ(⊥) → ⊥ .

Now, the following lemma is easy to see:
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Lemma 30 For a given instance of the PCP, let T 0,T 1,T 2 be the transducers
defined above. Then the following statements are equivalent:

(A) The instance has a feasible solution.
(B) There exists a term t such that 〈t, t〉 ∈ τT 2

(τT 1
(τT 0

(b))).

Before we apply this in the cryptographic setting, we use it for an automata-
theoretic problem.

We define the following extension of TTAC’s. A top-down tree transducer with
non-linear left-hand side (TTNL) is a TTAC with transitions of the form as
defined in (3) but where t is not required to be linear.

Now we can prove:

Theorem 31 For TTNL’s, the iterated pre-image problem is undecidable.

PROOF. The proof is by reduction from the PCP. Given a PCP instance as
above, we construct T 0, T 1, and T 2 as above. In addition, we construct the
TTNL T 3 defined by the single transition

qI(〈x, x〉) → secret .

Clearly, τT 3
(t) 6= ∅ only if t = 〈t0, t1〉 where t0 = t1, and if this is the case,

then τT 3
(t) = {secret}. From this and Lemma 30, we obtain that the instance

has a feasible solution if and only if secret ∈ (τT 3
◦ τT 2

◦ τT 1
◦ τT 0

)−1({b}),
which completes the description of the desired reduction. 2

We note that for this undecidability result to hold allowing ε-transitions in
transducers is essential: If ε-transitions are not allowed, then on a given input,
a transducer can only produce a finite number of outputs modulo new anony-
mous constants. In addition, it is easy to bound the number of anonymous
constants to be considered. Thus, we obtain:

Observation 32 For TTNLs without ε-transitions, i.e., only with Σ-tran-
sitions of the form (17), the iterated pre-image word problem is decidable.

6.2 Equality Tests on Messages

We start with the following definition. A protocol where the receive-send ac-
tions are defined by TTNL’s is called a TTNL-based protocol.

We show the following:
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Theorem 33 For TTNL-based protocols, Attack and InterleavingAt-

tack are undecidable.

PROOF. The proof is by reduction from the PCP. We demonstrate the proof
for InterleavingAttack; the one for Attack is essentially the same.

The reduction is essentially the same as the one in the proof of Theorem 31,
but we cannot simply take the four transducers as the protocol description,
because the intruder could interfere, and we have to produce a challenge output
action. To prevent the intruder from interfering, we simply encrypt the output
of every transducer with a key not known to the intruder and make sure that
only encrypted messages are accepted. In addition, we use a different key for
every transducer. This makes sure that the order in which the transducers are
applied is preserved.

More precisely, we modify the transducers as follows:

− T 0: We add the transition q∗I (x) → enc
s

b0
(qI(x)) to T 0 and declare q∗I to be

the initial state.
− T 1: We add the transition q∗I (enc

s

b0
(x)) → enc

s

b1
(qI(x)) and declare q∗I to

be the initial state.
− T 2: We add the transition q∗I (enc

s

b1
(x)) → enc

s

b2
(qI(x)) and declare q∗I to

be the initial state.
− T 3: We add the transition q∗I (enc

s

b2
(x)) → qI(x) and declare q∗I to be the

initial state.

In addition, we add the transducer T 4 defined by qI(b) → secret. Now, it is
clear that the instance of InterleavingAttack determined by the trans-
ducers T 0, . . . , T 4 and the initial knowledge S = {b} is solvable iff the given
instance of the PCP has a feasible solution. 2

6.3 Complex Keys and Challenge Outputs

To model complex keys, we replace the unary symbol encsa(·) by the binary
symbol enc(·, ·). The message enc(m,m′) with m,m′ ∈ M stands for the
message m′ encrypted by m. Note that the key m may be a complex message.

Accordingly, we extend the intruder’s ability to derive messages. If the intruder
knows m,m′ ∈ M, then he can generate enc(m,m′). If he knows enc(m,m′)
and m, then he knows m′ as well.

The transducers used to define principals are not extended, except that the
signature changes.
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We have:

Theorem 34 For TTAC-based protocols with complex keys, Attack and
InterleavingAttack are undecidable.

PROOF. To see this it suffices to observe that in the reduction from the
proof of Theorem 33, T3 can be replaced by the transducer defined by

q∗I (enc
s

b2
(〈x, x′〉) → 〈encs

enc
s

b3
(x)(secret), enc

s

b3
(x′)〉 ,

where b3 is a new constant not known by the intruder. This ensures that
the intruder can get hold of secret iff the messages substituted for x and x′

coincide. In other words, the reduction uses that decryption for complex keys
requires equality tests for messages of arbitrary size. 2

Similarly, we obtain an undecidability result if we allow arbitrary challenge
output actions. More precisely, the setting is as follows. The message space
is defined as in Section 4, but in a challenge output action the principal is
allowed to return any message from M as challenge (rather than an element
of C ∪ A).

Theorem 35 For TTAC-based protocols with arbitrary challenge output mes-
sages, Attack and InterleavingAttack are undecidable.

PROOF. We modify the reduction from the proof of Theorem 33 appropri-
ately. First, we define the transducer T 3 by the transition

qI(enc
s

b2
(〈x, x′〉)) → 〈encsb3(x), enc

s

b4
(x′)〉

and T4 by

qI(enc
s

b4
(x)) → enc

s

b3
(x) ,

where b3 and b4 are new constants not known to the intruder. Thus, the
challenge for the intruder is encsb3(x

′) which he can derive only if the messages
substituted for x and x′ in the transition of T2 coincide. 2

6.4 XOR and Diffie-Hellman Exponentiation

We next prove that extending the protocol model by exclusive or (XOR) or by
Diffie-Hellman exponentiation leads to undecidability. We first consider XOR.
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The message space is extended as follows. We add the constant 0 and the
binary symbol ⊕ which among others has the following algebraic property:
m ⊕m = 0 (see, e.g., (Chevalier et al., 2003a) for other properties of XOR.)
These properties induce an equivalence relation ≡ on messages. For instance,
enc

s

a(m ⊕m) ≡ enc
s

a(0). Note that this gives a way to compare messages for
equality.

In general, one would extend the intruder by the ability to combine messages
using the XOR operator. For the undecidability result it does, however, not
make a difference whether or not the intruder is equipped with this ability.

Also, one would require the transducers to work on equivalence classes of
messages according to the XOR theory. However, it is easy to see that for the
reduction this also does not matter.

Theorem 36 For TTAC-protocols with XOR, the problem Attack and the
problem InterleavingAttack are undecidable.

PROOF. To show undecidability, we can again modify the reduction from
PCP as described in the proof of Theorem 33. Instead of just T 3 we now need
two transducers, T 3 and T 4. Transducer T 4 in the proof of Theorem 33 is now
called T 5.

The transducer T 3 is now given by

qI(enc
s

b2
(〈x, x′〉)) → enc

s

b3
(x⊕ x′) .

Thus, the intruder obtains enc
s

b3
(0) iff the messages substituted for x and x′

coincide.

Now, T 4 checks whether the intruder knows encsb3(0) and if so returns secret.
That is, T4 is defined by

qI(enc
s

b3
(0)) → secret .

Transducer T 5 is defined just as T 4 in the proof of Theorem 33. 2

A similar reduction is possible for Diffie-Hellman exponentiation (Chevalier
et al., 2003b) since the normalization also involves comparison of arbitrary
messages, for instance, Exp(g, x · x′−1) = 1 iff x = x′. We obtain:

Theorem 37 For TTAC-based protocols with Diffie-Hellman exponentiation,
Attack and InterleavingAttack are undecidable. 2

47



7 Modeling Cryptographic Protocols

In this section, we present formal TTAC-based protocols models for the re-
cursive authentication protocol (as an example of a recursive protocol) and
the Needham Schroeder Public Key Protocol (as an example of a non-looping
protocol).

7.1 The Recursive Authentication Protocol

In Section 7.1.1, we first give an informal description of the recursive authen-
tication protocol (RA protocol). Section 7.1.2 provides a formal TTAC-based
model for this protocol. In what follows, we abbreviate messages of the form
〈m0, . . . , 〈mn−1, mn〉 · · ·〉 by m0 · · ·mn or m0, . . . , mn.

7.1.1 Informal Description of the RA Protocol

The RA protocol was proposed by Bull and Otway (1997) and it extends
the authentication protocol by Otway and Rees (1987) in that it allows to
establish session keys between an a priori unbounded number of principals in
one protocol run. Our description of the RA protocol follows Paulson (1997).

In the RA protocol one assumes that a key distribution server S shares long-
term keys with the principals. In Figure 1 a typical protocol run is depicted. In
this run, A wants to establish a session key with B and B wants to establish a
session key with C. The number of principals involved in a protocol run is not
bounded. In particular, C could send a message to some principal D in order
to establish a session key with D and D could continue and send a message
to E, and so on. In the protocol run depicted in Figure 1, we assume that C
does not want to talk to another principal and therefore sends a message to
the key distribution server S, who is involved in every protocol run.

In Figure 1, Ka (resp. Kb, Kc) denotes the long-term key shared between A
and S (resp. B and S, C and S). With Na, Nb, and Nc we denote nonces
(i.e., random numbers) generated by A, B, and C, respectively. Finally, Kab,
Kbc, and Kcs are the session keys generated by the server and used by the
principals for secure communication between A and B, B and C, and C and
S, respectively. The numbers (1. – 6.) attached to the messages only indicate
the order in which the messages are sent and do not belong to the protocol.

We now take a closer look at the messages exchanged between the principals
in the order they are sent: In the first messages (1.), principal A indicates that
she requests a session key from the server for secure communication with B.
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The symbol “−” says that this message started the protocol run. Now, in the
second message (2.), B sends something similar to C but with A’s message
instead of “−”, indicating that he wants to share a session key with C. As
mentioned, this step could be repeated as many times as desired, yielding
an ever-growing stack of requests. The process is terminated if one principal
contacts S. In our example, we assume that C does not request another session
key, and therefore, sends the message received from B to S (3.). This message
is now processed by S. This can be done in different ways. In what follows,
we describe one possible way.

First, S checks whether the outer request is in fact addressed to S. If so, S
generates a new session key and stores it. Now, S processes the requests start-
ing from the outermost. In general, S has a “frame” containing two requests
at a time. In the example, S starts with a frame containing the requests CSNc

and BCNb. Thus, S knows that C wants to talk to S and that B wants to
talk to C. Consequently, S has to generate two so-called certificates for C,
one that contains the session key for communication with S and the other one
for communication with B. These certificates are generated by S as follows.
The first one contains the session key stored, the name S of the server, and
C’s nonce Nc. For the second certificate, S generates a new session key, stores
it for later use, and then assembles the second certificate for C containing
the session key just generated, B’s name, and C’s nonce Nc. At this point,
all certificates for C have been prepared. Therefore, S moves the frame one
request further and processes this frame as before. Note that now the frame
contains the requests BCNb and ABNa, and that for the first certificate sent
to B, S uses the session key stored. After the two certificates for B have been
prepared, S moves the frame one request further. Now this frame contains
only one request, namely, ABNa−. The marker “−” indicates that A started
the protocol. Therefore, only one certificate for A is generated. It contains the
session key stored, B’s name, and A’s nonce Na. After this, S has prepared all
certificates and sends them back to the principal who called S. In the example
this is C.

Principal C accepts the first two certificates, extracts the two session keys, and
forwards the rest of the message to his predecessor in the chain (5.). Then,
B does the same, and forwards the last certificate to A (6.) Since according
to the intruder model, the message send by S is sent to the intruder, we may
assume that every principal only receives his or her certificates and does not
need to forward the rest of the message to his or her predecessor.

7.1.2 The TTAC-based Protocol Model

We now provide a formal description of the RA protocol in the TTAC-based
protocol model. In what follows, let P0, . . . , Pn be the principals participating
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Fig. 1. A Run of the Recursive Authentication Protocol

in the RA protocol. We assume that Pn = S is the server. Every Pi, i < n,
shares a long-term key Ki with S. We model static corruption and therefore
partition the set of principals into honest H and dishonest D principals, i.e.,
we have H∪D = {0, . . . , n} and H∩D = ∅. We assume that S is honest, and
hence, S ∈ H. The intruder will play the role of the dishonest principals and
for this purpose his initial knowledge will contain Ki for every i ∈ D.

In the following, we first specify honest agents and the server. We then put
everything together to formally specify the RA protocol as a TTAC-based
protocol.

Modeling the Honest Agents. An honest agent Pi, i < n and i ∈ H,
performs two receive-send actions and is given by the tuple Πi = (T i

0
,T i

1
, Ii).

The different components are defined next. The nonce sent by Pi in the request
message is denoted by the constant Ni.

The message transducer T
i

0
for sending the request message consists of two

transitions. The first one is

(request,⊥, Pj′)(∗, init) → hashKi
(Pi, Pj′, Ni,−),

and the second one is

(request, Pj, Pj′)(∗, hasha(Pj, Pi, x0, x1)) →

hashKi
(Pi, Pj′, Ni, hasha(Pj, Pi, x0, x1)) ,

where x0 and x1 are variables, j ′ ≤ n, j < n, a ∈ A, and init ∈ A is some
atomic message known to the intruder. The first transition is applied if Pi initi-
ates a protocol run and calls Pj′. The second transition is applied if Pi is called
by Pj and sends a message to Pj′. The initial states of T

i

0
are (request,⊥, Pj′)

and (request, Pj, Pj′) for every j ′ ≤ n and j < n.

The transducer T
i

1
is a challenge output action which receives a session key and

sends it out to the intruder as a challenge in case the communication partner
is honest. Note that the secrecy of a session key only needs to be guaranteed
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among honest principals. If one communication partner is dishonest it is clear
that the intruder can derive the session key by simply following the protocol.
Hence, in this case the challenge could always be met by the intruder. For
every j1, j2, j3 ≤ n and j4, j5 < n with j1, j3, j4 ∈ H, T

i

1
contains the following

transitions:

(key,⊥, Pj1)(∗, enc
s

Ki
(x0, Pj1, Ni)) → x0

(key, Pj2, Pj3)(∗, 〈enc
s

Ki
(x0, Pj3, Ni), enc

s

Ki
(x1, Pj2, Ni)〉) → x0

(key, Pj4, Pj5)(∗, 〈enc
s

Ki
(x0, Pj5, Ni), enc

s

Ki
(x1, Pj4, Ni)〉) → x1

where x0 and x1 are variables. The first transition is applied if Pi initiated the
protocol run for communication with Pj1. We require that j1 ∈ H since if Pj1

were dishonest, then, as already mentioned above, it is clear that the intruder
could obtain x0 by simply following the protocol. The other two transitions
are applied if Pi was called by Pj2 and Pj4, respectively, and called Pj3 and
Pj5, respectively. For the same reason as above we require that j3, j4 ∈ H. All
states occurring in T

i

1
are initial states.

It remains to define I i. We want to guarantee that Pi remembers who he called
and who wants to communicate with Pi. Therefore, we set

Ii = {((request,⊥, Pj′), (key,⊥, Pj′)) | j
′ ≤ n}

∪ {((request, Pj, Pj′), (key, Pj, Pj′)) | j
′ ≤ n, j < n}.

This model of the agents is more precise than the one presented in (Küsters,
2002) where word transducers have been used instead of tree transducers.
While in (Küsters, 2002), the nonces (the messages substituted for x0 in T

i

0
)

needed to be typed since a word transducer can not parse arbitrary message,
here any message can be substituted for x0.

Modeling the Server. Since the server S = Pn performs only one receive-
send action, it can be described by a single message transducer, which we call
T n. Formally, Pn is defined by the tuple Πn = (T n, {start}) where start is the
initial state of T n, with Tn defined next.

The transducer Tn has two states and works as described in Section 7.1.1. In
state start, the initial state, Tn checks whether the first request is addressed
to S and generates a session key which is stored in the register. In state read,
the requests are processed. In this phase, the register is used to store a session
key while moving the frame to the next request.

The transitions of Tn are specified as follows:
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start(∗, hashKi
(Pi, Pn, x0, x1)) → read(vN , hashKi

(Pi, Pn, x0, x1))

read(vR, hashKi
(Pi, Pj, x0,−)) → enc

s

Ki
(vR, Pj, x0)

read(vR, hashKi
(Pi, Pj, x0, hashKi′

(Pi′ , Pi, x1, x2))) →

enc
s

Ki
(vR, Pj, x0), enc

s

Ki
(vN , Pi′ , x0), read(vN , hashKi′

(Pi′, Pi, x1, x2))

where i, i′, j ≤ n and x0, x1, x2 are variables which take arbitrary messages,
and vR and vN are the variables for the register and the new anonymous
constant, respectively.

This model of the server is more precise than the one presented in (Küsters,
2002). First, we do not need to assume that nonces are typed. The server
accepts any message as nonce. In the word transducer model this was not
possible since i) word transducers cannot parse arbitrarily nested messages and
ii) they cannot copy messages of arbitrary size, which is however necessary in
the last transition of the server. Second, TTAC’s allow to generate anonymous
constants, and thus, provide a very natural way of modeling the creation of
new session keys. The word transducers as considered in (Küsters, 2002) did
not have this capability. Therefore, in (Küsters, 2002), the server could only
choose from a finite set of session keys. Since the number of session keys the
server needs to generate is not fixed a priori, this was only an approximation
of the server’s actual behavior.

It is clear that with decidable models for non-looping protocols (Rusinowitch
and Turuani, 2001; Millen and Shmatikov, 2001; Boreale, 2001; Amadio et al.,
2002) the server cannot be modeled faithfully since these models do not allow
to describe recursive processes.

The Specification of the RA Protocol. Given the specification of the
honest agents and the server from above, the RA protocol is now formally
specified by the tuple

({Πi}i∈H, {P0, . . . , Pn} ∪ {Ki | i ∈ D}),

i.e., we explicitly model the behavior of the honest agents, including the server,
by the TTAC-based principals Πi. The dishonest agents are subsumed by the
intruder who has in his initial knowledge the names of all principals and the
long-term keys the dishonest agents share with the server.

We note that while in an attack only at most one session of an honest agent
is performed, the intruder can simulate an unbounded number of sessions of
dishonest agents. In particular, one dishonest agent can be involved in many
requests to the server, and hence, the length of the list of requests sent to the
server in an attack is unbounded.
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7.2 The Needham Schroeder Public Key Protocol

The Needham Schroeder Public Key Protocol is a famous public key challenge
response protocol (see, e.g., (Clark and Jacob, 1997) for a more detailed de-
scription). In our terminology it is a non-looping protocol since its receive-send
actions do not require iteration or recursion.

In the standard Alice and Bob notation the protocol can be described as
follows where KA and KB denote A’s and B’s public key, respectively, and NA

and NB denote nonces generated by A and B, respectively:

A→ B : encaKB
(NA, A)

B → A : encaKA
(NA, NB)

A→ B : encaKB
(NB)

B → : NB

The last action of B is a challenge output action. That is, B presents NB as
a challenge for the intruder since NB may be used as session key.

We model the protocol as follows: We assume that honest A runs one instance
of the protocol as initiator with the intruder I. We also model one instance of
honest B running in the role of a responder with A.

All receive-send actions can be modeled by TTAC’s with only one state, which
we call start, and one transition.

Principal A is formally specified as a TTAC-based principal by the tuple ΠA =
((T A

0
,T A

1
), {start} × {start}) where T

A

0
and T

A

1
specify the two receive-send

actions performed by A. These TTAC’s have the following transitions:

T
A

0
: start(∗, init) → enc

a

KI
(NA, A)

T
A

1
: start(∗, encaKA

(NA, x)) → enc
a

KI
(x)

Principal B is formally specified as a TTAC-based principal by the tuple
ΠB = ((T B

0
,T B

1
), {start}×{start}) where T

B

0
and T

B

1
specify the two receive-

send actions performed by B. These TTAC’s have the following transitions:

T
B

0
: start(∗, encaKB

(x,A)) → enc
a

KA
(x,NB)

T
B

1
: start(∗, encaKB

(NB)) → NB

Now, the Needham-Schroeder Public Key Protocol with honest A running one
instance of the protocol as initiator with the intruder I and honest B running
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one instance of the protocol as responder with A is formally specified as a
TTAC-based protocol by the tuple

({ΠA,ΠB}, {A,B,KA, KB, KI , K
−1
I }),

i.e., the instances of the honest principals A and B are explicitly specified
by ΠA and ΠB. The initial intruder knowledge contains the names of the
principals and their public keys as well as the private key of the intruder.

The protocol specification above could of course be extended by instances of
other principals or further instances of A and B, e.g., those in which they talk
to other principals. The one described above is sufficient to uncover the attack
first found by Lowe (1995).

We point out that nonces are not required to be typed. The principals accept
any message as nonce. In fact, the formulation of the Needham-Schroeder Pro-
tocol as described here is as accurate as other formulations based on models for
non-looping protocols (Rusinowitch and Turuani, 2001; Millen and Shmatikov,
2001; Boreale, 2001; Amadio et al., 2002). Just as for the RA protocol, in
(Küsters, 2002) one would have to assume that nonces are typed.

8 Conclusion

The main goal of this paper was to shed light on the feasibility of automatic
analysis of recursive cryptographic protocols. The results obtained here trace
a fairly tight boundary of the decidability of security for such protocols. To
obtain our results we introduced tree automata (TAAC’s) and transducers
(TTAC’s) over signatures with an infinite set of (anonymous) constants and
proved that for TTAC’s the iterated pre-image word problem is decidable.
Apart from the application to cryptographic protocols, we believe that the
study of TAAC’s and TTAC’s started here is of independent interest.

One open problem is to establish tight complexity bounds for our decidability
results. So far, our transducers allow for only one register. We believe that
our results also hold even for the case of multiple registers. We have, how-
ever, not investigated this case, mainly because it was not necessary for our
application and because it would have made the definitions and proofs more
cumbersome. While here we do not allow anonymous constants as keys, this
would be another interesting extension of our model. Our decision procedure
for analyzing the security of recursive protocols has been implemented (Ober-
mann, 2004). However, not much effort has been put into optimizations yet. So
far, even on simplified versions of the Recursive Authentication Protocol and
the Needham-Schroeder Public Key Protocol the implementation runs out of
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memory. This is due to the fact that for every pre-image automata the state
space grows exponentially. It is not clear, from a complexity-theoretic point
of view, whether this blowup can be avoided. From a practical point of view,
much more effort has to be put into finding heuristics for cutting down the
state space of the pre-image automata.

Acknowledgment. We thank the anonymous reviewers for their helpful
and detailed comments.

References

Alon, N., Milo, T., Neven, F., Suciu, D., Vianu, V., 2003. XML with Data
Values: Typechecking Revisited. Journal of Computer and System Sciences
66 (4), 688–727.

Amadio, R., Lugiez, D., Vanackere, V., 2002. On the symbolic reduction of pro-
cesses with cryptographic functions. Theoretical Computer Science 290 (1),
695–740.

Ateniese, G., Steiner, M., Tsudik, G., 1998. Authenticated group key agree-
ment and friends. In: Proceedings of the 5th ACM Conference on Computer
and Communication Secruity (CCS’98). ACM Press, San Francisco, CA, pp.
17–26.

Bellare, M., Rogaway, P., 1995. Provably secure session key distribution: the
three party case. In: Proceedings of the Twenty-Seventh Annual ACM Sym-
posium on Theory of Computing (STOC’95). ACM, pp. 57–66.

Boreale, M., 2001. Symbolic trace analysis of cryptographic protocols. In: Ore-
jas, F., Spirakis, P., van Leeuwen, J. (Eds.), Automata, Languages and
Programming, 28th International Colloquium (ICALP 2001). Vol. 2076 of
Lecture Notes in Computer Science. Springer-Verlag, pp. 667–681.

Bryans, J., Schneider, S., 1997. CSP, PVS, and a Recursive Authentication
Protocol. In: DIMACS Workshop on Formal Verification of Security Proto-
cols.

Bull, J., Otway, D., 1997. The authentication protocol. Tech. Rep.
DRA/CIS3/PROJ/CORBA/SC/1/CSM/436-04/03, Defence Research
Agency, Malvern, UK.
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