
Optimal Complexity Bounds for Positive LTL
Games

Jerzy Marcinkowski? and Tomasz Truderung??

Institute of Computer Science, WrocÃlaw University
jma@ii.uni.wroc.pl, tt@ii.uni.wroc.pl

Abstract. We prove two tight bounds on complexity of deciding graph
games with winning conditions defined by formulas from fragments of
LTL.

Our first result is that deciding LTL+(3,∧,∨) games is in PSPACE.
This is a tight bound: the problem is known to be PSPACE-hard even
for the much weaker logic LTL+(3,∧). We use a method based on a
notion of, as we call it, persistent strategy: we prove that in games with
positive winning condition the opponent has a winning strategy if and
only if he has a persistent winning strategy.

The best upper bound one can prove for our problem with the Büchi
automata technique, is EXPSPACE. This means that we identify a nat-
ural fragment of LTL for which the algorithm resulting from the Büchi
automata tool is one exponent worse than optimal.

As our second result we show that the problem is EXPSPACE-hard if
the winning condition is from the logic LTL+(3, d,∧,∨). This solves
an open problem from [AT01], where the authors use the Büchi au-
tomata technique to show an EXPSPACE algorithm deciding more gen-
eral LTL(3, d,∧,∨) games, but do not prove optimality of this upper
bound

1 Introduction

LTL (linear temporal logic) is one of possible specification languages for correct-
ness conditions in reactive systems verification [MP91]. Two sorts of decision
problems arise in this context. One of them is model checking. We ask here,
for a given transition graph G of a system, and for a formula ϕ of LTL, whether
ϕ is valid on all possible computation paths in G. This question is natural when
a closed system is verified, by which we mean one whose future behavior only
depends on its current state but not on any kind of environment. Model checking
for LTL conditions is known to be PSPACE-complete [SC85] (combined com-
plexity). Although, if 3 and 2 are the only modalities allowed in the formula
then model-checking is NP-complete [SC85]. Other fragments of LTL with easy
model-checking problem (in NP or even in P) are identified in [DS98].
? Partially supported by Polish KBN grant 2 PO3A 01818.

?? Partially supported by Polish KBN grant 8T11C 04319.

In this paper we are interested in the second kind of decision problems in
this area, which is deciding a game with condition ϕ. The computation path
here is a result of an infinite game played by two players S (as System) and E
(as Environment) on some game graph G. Each vertex of G is either existential,
when S decides on the next move, or universal, when E is the one who moves.
The goal of S is to make the formula ϕ valid on the computation path. This
paradigm is being considered in the context of automated synthesis. The future
behavior of the system depends here not only on its current state but also on the
inputs supplied by some unpredictable environment. It is known that deciding
which of the players has a winning strategy in such a graph game is doubly
exponential for general LTL formula ϕ [PR89].

1.1 Previous Work

Positive results. A classical technique for deciding an LTL game is to transform
the winning condition ϕ into a deterministic ω-automaton Aϕ, so called generator
of ϕ, which accepts an infinite path if and only if ϕ is true on this path. Then take
B = G×Aϕ as a new game (where G is the game graph under consideration). The
type of the game B (Büchi, Rabin, etc.) is the same as the type of the generator
Aϕ. The winning condition on B is defined in such a way that the same player
who had a winning strategy in the ϕ game on G has a winning strategy in the
game on B.

In [AT01] Alur and La Torre consider fragments of LTL which have determin-
istic generators being Büchi automata, and thus the resulting game is a Büchi
game and the winning player has a memoryless strategy. It is easy to decide such
a game: this can be done in a quadratic time with respect to the size (number
of vertices) of the game graph [Tho95]. Alur and La Torre improve on this: they
notice that one can decide a Büchi game in SPACE(d log n), where n is the size
of the game graph and d is another parameter called the longest distance of the
game graph. They carefully construct Büchi generators for different fragments
of LTL, trying to keep the longest distance as small as possible. In this way they
show that deciding LTL(3,∧) games is in PSPACE and that the same problem
for LTL(3, d,∧,∨) (and thus also for LTL(3,∧,∨)) is in EXPSPACE.
Lower bounds. It is known since [PR89] that the doubly exponential algorithm
deciding general LTL games is optimal. In their study of the complexity of
games with conditions from fragments of LTL [AT01] Alur and La Torre show
the PSPACE lower bound for LTL+(3,∧) (this proof is very easy) and the
EXPTIME lower bound for LTL(3, d,∧), and thus for LTL(3, d,∧,∨).

1.2 Our Contribution

Lower bound for LTL+(3, d,∧,∨). In Section 5 we solve an open problem
from [AT01] proving:

Theorem 1. Deciding games with the winning condition in LTL+(3, d,∧,∨)
is EXPSPACE-hard.

This is an optimal result, and a surprisingly strong one: it turns out that
the problem for the positive part LTL+(3, d,∧,∨) is as hard as for its boolean
closure LTL(3, d,∧,∨).

In our proof we use the fact that EXPSPACE can be viewed as a variant
of alternating EXPTIME. The game graph is defined in such a way that in the
first stage of a play the opponents, by turn, construct (or, as we say, declare)
a sequence which is intended to be a computation of an alternating machine.
Then, in the second stage, some way must be provided to detect all possible
sorts of cheating against the legality of this computation. And this is where our
main tool comes, which we call the objection graph. It appears that a formula of
LTL(3, d,∧,∨) expressing the property there are two equal patterns of length
n on the path, both beginning with the the state p requires the size exponential
in n. But as we show, if we have two players declaring a sequence, and each
of them can “raise an objection” by moving the play into the objection graph,
then a small (polynomial-length) formula of LTL(3, d,∧,∨) is enough to detect
equality of patterns of length n, as well as all the legality violations we need to
detect. Since we wanted to keep the formula positive, we could only grant to
S the ability of raising objections. This means that his cheats in the first stage
could remain undetected. This is why we need to construct the first stage with
some care.

Positive result for LTL+(3,∨,∧). In Section 4 we prove:

Theorem 2. Deciding games with the winning condition in LTL+(3,∨,∧) is
in PSPACE.

Again, it follows from [AT01] that this result is optimal. LTL+(3,∨,∧) may
appear to be quite a simple logic but still it requires huge generators. Indeed,
while studying LTL(3,∨,∧) the authors of [AT01] show that a deterministic
generator for the formula 3((p1 ∨3q1)∧ (p2 ∨3q2)∧ . . . (pk ∨3qk)) of the logic
LTL+(3,∨,∧), requires exponential longest distance and doubly exponential
size. This means that with their Büchi automata methodology no upper bound
better than EXPSPACE can be achieved for LTL+(3,∨,∧) games. And this,
as we prove, is one exponent worse than optimal. The core of our technique is
the notion of a persistent strategy1 (see Definition 1). In Section 3 we prove that
if E has a winning strategy in any positive game then he also has a persistent
winning strategy. And deciding an LTL+(3,∨,∧) game if E uses a persistent
strategy is in PSPACE, as we show, in Section 4.

2 Preliminaries

Linear Temporal Logic. Let P be a given finite set of atomic propositions.
Linear temporal logic (LTL) formulas are built according to the grammar:

ϕ ::= s | ϕ ∧ ϕ | ϕ ∨ ϕ | dϕ | 3ϕ | 2ϕ | ϕ Uϕ,
1 The notion of persistent strategy is a very natural one. We believe it can have other

applications. That is why we would not be surprised to learn that it has been studied
before. However, we are not currently aware of any reference to such a study.

where s is a state predicate, that is a boolean combination of atomic propositions.
Temporal operators d, 3, 2, U are usually read as next, eventually, always, and
until respectively. LTL formulas are interpreted in the standard way on infinite
sequences over the alphabet Σ = 2P .

Fragments of LTL. We denote by LTL+(op1, . . . , opk) the set of LTL for-
mulas built from state predicates using only boolean and temporal connectives
op1, . . . , opk. Furthermore, following [AT01], we denote by LTL(op1, . . . , opk) the
set of formulas obtained as boolean combinations of LTL+(op1, . . . , opk).

Game Graphs. A two-player ϕ game on G is given by an LTL formula ϕ, called
a winning condition2, and a game graph G = (V, V∀, V∃, E, v0, δ) with the set of
vertices V partitioned into V∀ and V∃, the set of edges E ⊆ V × V , the initial
vertex v0 ∈ V , and a function δ : V → 2P which assigns to each vertex a set of
atomic propositions. We say that p is true in v if p ∈ δ(v). Elements of V∀ are
called universal vertices, and elements of V∃ are called existential vertices. To
denote elements of V we will use letters u, v, w, . . .

A finite play is a sequence u0 . . . uk ∈ V ∗ such that u0 is the initial vertex,
and 〈ui−1, ui〉 ∈ E, for all i ∈ {1, . . . , k}. Similarly, an infinite play is an infinite
sequence u0u1 . . . of elements from V such that u0 is the initial vertex, and
〈ui−1, ui〉 ∈ E, for all i ≥ 1. To denote (finite or infinite) plays we will use letters
u,v,w, . . . During a game, two players S (the System) and E (the Environment)
construct a sequence v0,v1,v2, . . . of finite plays. They begin with v0 = v0. If
vi = ww for some ww then vi+1 = www′, where w′ is selected by S if w is
existential, and by E if w is universal. Let v be the infinite play which is the
limit of v0,v1,v2, . . . Then S wins if v |= ϕ. A strategy and a winning strategy
for S (or E) is defined in the standard way.

The problem of deciding LTL(op1, . . . , opk) (or LTL+(op1, . . . , opk)) games is
a problem of deciding whether S has a winning strategy for a given game graph,
and a winning condition given as an LTL(op1, . . . , opk) (or LTL+(op1, . . . , opk))
formula.

3 Positive Games and Persistent Strategies

Definition 1. The strategy of the player P is persistent if for each play
v1v2 . . . vk played by P according to this strategy, if vi = vj, for some 1 ≤ i, j < k,
and vi is a vertex where P is to move, then vi+1 = vj+1.

In other words, a strategy of the player P is persistent if, each time P decides
on a move in some vertex v, he repeats the decision he made when v was visited
for the first time.

One of the most well-studied kind of strategies are memoryless strategies:
this means that the way the player behaves only depends on the vertex of the
graph, not on the history of the game. Being persistent is a weaker property
than being memoryless:
2 In general many types of winning conditions are considered (see [Tho90]).

- b

bp

b
q

r

bp
′

b
q′

@
@R

¡
¡µ

¡
¡µ

@
@R

¡
¡µ

@
@R

¡
¡ª

@
@I

Fig. 1.

Example. Let G be a game graph with V = {u, up, uq, up′ , uq′ , v} where u is the
initial vertex and all vertices except v are existential (Fig. 1). The edges in E
are: 〈u, up〉, 〈u, uq〉, 〈up, v〉, 〈uq, v〉, 〈v, up′〉, 〈v, uq′〉, 〈up′ , v〉, 〈uq′ , v〉. The variables
p, q,p′, q′ are true in vertices up, uq, up′ and uq′ respectively. Let ϕ be the formula
3((p ∧3p′) ∨ (q ∧3q′)). Then E does not have a memoryless winning strategy
in the ϕ game on G but he does have a persistent winning strategy. ut

As we are soon going to see the existence of a persistent winning strategy in
the example above is not a coincidence.

Notations. For two plays w and v we will use the notation w ≤ v to say that
w is a prefix of v. Let v,w be two plays, finite or not. Then by w v v we mean
the expression “w is a subsequence of v” (where abc is a subsequence of adbdc).

Definition 2. We call a game positive, if for each two infinite plays w and v,
if S wins the play w and w v v then S wins also the play v.

It will be convenient in this section to see a strategy for E as a tree of all
possible finite plays played according to this strategy. The following definition
is consistent with the standard way of defining strategy:

Definition 3. A strategy for E is a set T of finite plays such that:

(i) v0 ∈ T , where v0 is (the word consisting of) the initial vertex of G;
(ii) if w ∈ T and v ≤ w is a nonempty prefix of w then v ∈ T ;
(iii) if ww ∈ T , where w is an existential vertex of G, then wwv ∈ T for each

vertex v such that (w, v) ∈ E;
(iv) if ww ∈ T , where w is a universal vertex of G, then wwv ∈ T for exactly

one vertex v such that (w, v) ∈ E.

A strategy for E , as defined above, has a natural structure of an infinite tree,
and is winning if each infinite path of this tree is a play won by E .

Lemma 1. Let T be a winning strategy for E in some positive game. Let T ′ be
a strategy for E with the property that for each w ∈ T ′ there exists v ∈ T such
that w v v. Then T ′ is also a winning strategy for E. ut

The main result of this section is:

Theorem 3. If E has a winning strategy in a some positive game on some graph
G with n vertices, then he has a winning strategy which is persistent.

The proof of the theorem will take the rest of this section. The following
notation will be useful:

Definition 4. Let T be a strategy for E and let v be a universal vertex. Then
by T v we denote the set of those v ∈ T which are of the form v′v for some v′.
Similarly, by T vw we denote the set of those v ∈ T which are of the form v′vw
for some v′. By T v

w (and T vw
w) we will denote the set of those u ∈ T v (u ∈ T vw)

for which u ≥ w holds.

We will need a local version of the notion of a persistent strategy:

Definition 5. Let T be a strategy for E, and v ∈ T v for some universal v. Let
w be the (unique) vertex of V such that vw ∈ T . Then T is v-persistent if for
each play w ∈ T v

v we have ww ∈ T .

The meaning of the definition is that T is v-persistent for some v ∈ T v if
the decision about the way E plays in vertex v made at the moment after the
play v, will not be changed in the future. It is easy to see that a strategy T is
persistent if and only if it is v-persistent for each v ∈ T such that v ∈ T v for
some universal v.

To end the proof of Theorem 3, it will be enough to prove:

Lemma 2. Let T be a winning strategy for E. For each universal v and each
v ∈ T v, there exists a winning strategy T (T,v) for E such that:

1. T (T,v) is v-persistent;
2. if v 6≤ w then w ∈ T (T,v) if and only if w ∈ T ;
3. if v ≤ u and uuu′ ∈ T (T,v) for some universal u 6= v, then there exists w

such that v ≤ w and wuu′ ∈ T .

With the last lemma a persistent winning strategy for E can be constructed
from any winning strategy for E : going from the root of T down each path, re-
place T with T (T,v) each time a play v ∈ T v is reached, where v is universal
and v does not occur in v earlier than as its last symbol. This procedure con-
verges to some winning strategy for E , because on each path such a replacement
will be done at most n times. By item 2 of the lemma two such replacements
performed in ≤–incomparable points do not interfere. By item 3, if u ≤ w then
T ((T (T,u)),w) remains u-persistent, so the later replacements do not destroy
the effect of the earlier.

Proof of Lemma 2. Let ≤v be the prefix ordering on T v (so ≤v coincides on
T v × T v with the relation ≤, the prefix ordering on the set of all finite plays).

There are 2 cases.
Case 1. There is a play w ∈ T v

v which is ≤v maximal.
It is easy to see that in this case we can put s ∈ T (T,v) for v 6≤ s such that

s ∈ T , and vs ∈ T (T,v) for each ws ∈ T . By Lemma 1, the obtained strategy
is a winning strategy for E .
Case 2. There is no such ≤v maximal play in T v

v .
This case is more complicated. We will need:

Definition 6. In the situation of Case 2, let u ∈ T v
v be such that uv′ ∈ T . We

will say that u is v′-dense if, for each w ∈ T v
u , the set T vv′

w is non-empty.

It turns out that:

Lemma 3. There exists uv′ ∈ T , where u ∈ T v
v , such that u is v′-dense.

Proof. Suppose there is no such u. We define by induction a sequence w1 ≤ w2 ≤
w3 . . . of plays, and a sequence w1, w2, . . . of vertices. Let w1 = v. Suppose that
wi ∈ T v

v is already defined, and let wi be such that wiwi ∈ T . We know that
wi is not wi dense. This means that there exists u ∈ T v

wi
such that T vwi

u is
empty. Define wi+1 = u. Notice that if i > j then T

vwj
wi is empty (because

T
vwj
wi ⊆ T

vwj
wj+1). Thus wi 6= wj . We get a contradiction since there are only

finitely many elements of V . ut
Once we have w which is w-dense for some w we are ready to construct

T (T,v). Consider a play u ≥ w. Then: u = wv1vv2v . . . vvm where v does not
occur in v1v2 . . .vm. Let α(s) be s if the first symbol of s is w and the empty
word otherwise. Define β(u) as vα(v1v)α(v2v) . . . α(vm).

Now: T0(T,v) = {u : v 6≤ u ∧ u ∈ T} ∪ {β(u) : u ≥ w ∧ u ∈ T}.
T0(T,v) is not yet a strategy: condition (iv) of Definition 3 may not hold in

this tree: it is possible that some plays ending with a universal vertex different
than v will have more than one direct successor there. One can prune the tree
T0(T,v) in any way, so the result satisfies Definition 3 (iv), and call the result
T (T,v). With the use of Lemma 1 one can now verify that T (T,v) is a strategy
as required by Definition 3 and by Lemma 2. This ends the proof of Lemma 2.

ut

4 Proof of Theorem 2

Notations. Let n = |V | where V is the set of vertices of the game graph G. By
ϕ we always mean a formula of LTL+(3,∨,∧) in this section.

Since ϕ is positive the following lemma holds:

Lemma 4. For a given game graph G and a formula ϕ there exists ρ(s) such
that:

1. ρ(s) is a positive boolean combination of expressions of the form w v s,
where s is the variable which is free in ρ, and each w is some fixed word of
length not greater than l, where l is the 3-depth of ϕ;

2. ρ and ϕ are equivalent in the sense that for each infinite play v it holds that
ρ(v) if and only if v |= ϕ.

Proof. Induction on l. ut
By the last lemma, if v is some infinite play won by S then there exists a

finite prefix v′ of v such that, for every infinite play w, if v′ ≤ w then w is won
by S. In such a case we say that S secures his win after the play v′. One can

bpk+1
vk+1

bpk+1, qk+1 wk+1

r uk+1

bzk+1rk+1

6

?
i

±°
²¯

bvkPPPq
³³³1

∃ ∀
´

´
´́+

Q
Q

QQk

Mk

Fig. 2. Graph Mk+1

prove that if S has a winning strategy in the ϕ game on G then he can secure his
win after a number of steps which is exponential with respect to the combined
size of the instance. Our first conjecture was that the win of S can be secured in
such a case already after polynomial number of steps. If true, this would give a
straightforward way of proving Theorem 2. It would be enough to perform the
mini-max search on the tree of all plays of polynomial depth, a procedure which
is clearly in PSPACE. Our conjecture is, however, false:

Theorem 4. There exist a formula ϕ and a graph G such that S has a winning
strategy, but he is not always able to secure his win after a polynomial number
of steps.

Proof. Let M0 be a game graph consisting of only one existential vertex v0 where
p0 is true, and of one edge E(v0, v0). Let ϕ0 be the formula 3p0. We define ϕk+1

as 3(pk+1 ∧ 3ϕk ∧ (qk+1 ∨ 3rk+1)). Graph Mk+1 (Fig. 2) consists of all the
vertices and edges of graph Mk, of new existential vertices vk+1,wk+1 and zk+1

and a new universal vertex uk+1. There are also new edges: from vk+1 and from
wk+1 to the initial vertex of Mk, from each existential vertex of Mk to uk+1,
from uk+1 both to wk+1 and to zk+1, and a loop from zk+1 to itself. The initial
vertex of the new graph is vk+1. The variables which are true in the vertices of
Mk remain true in the same vertices in Mk+1. For the new vertices: pk+1 is true
in vk+1 and in wk+1, rk+1 is true in zk+1 and qk+1 is true in wk+1.

Now, one can prove by induction on k that, for every k, S has a winning
strategy in the ϕk game on Mk. Assume the claim is true for some k and consider
the ϕk+1 game on Mk+1. S moves from vk+1 to vk and then uses his winning
strategy in the ϕk game on Mk. Once he secures his win in the ϕk game on
Mk he uses one of the new edges to leave Mk, and goes to uk+1. Now E is to
move. If he decides to go to zk+1 then the formula 3(pk+1 ∧ 3ϕk ∧ 3rk+1),
which implies ϕk+1, is true on the constructed play. If E prefers to move to wk+1

instead of zk+1 then S enters Mk and once again uses his winning strategy in
the ϕk game on Mk. Once he secures his win in this smaller game again, the
formula 3(pk+1 ∧3ϕk ∧ qk+1), which implies ϕk+1, holds true on the resulting
game.

We also use induction on k in order to show that E can survive 2k of steps
before the win of S in the ϕk game on Mk is secured. Assume the claim is true

for some k, and consider the situation for k+1. If S makes the step from the Mk

part to uk+1 before he secures the win in the ϕk game there, then E can move
to zk+1 and win. So S cannot enter uk+1 before 2n moves are made. If now E
moves from uk+1 to wk+1 then the only way to secure win for S is to move to
vk and win the ϕk game on Mk again, which again takes at least 2n moves. ut

But it turns out that in spite of Theorem 4 we are still able to find a way of
restricting the search only to game trees of polynomial depth. Notice that the
game under consideration is positive. So thanks to Theorem 3 we can assume
that E is using a persistent strategy. To end the proof of Theorem 2 it is enough
to prove:

Lemma 5. If S has a winning strategy in a ϕ game on G and he plays against
an opponent who uses a persistent strategy, then S can secure his win after a
polynomial number of steps.

4.1 Proof of Lemma 5

In this subsection we assume that E uses a persistent strategy.

Lemma 6. Suppose v = v1v2 . . . vm is a play such that vm is an existential
vertex and S has a winning strategy after v is played. Then there exists a play
vu1u2 . . . uk, with k polynomial, such that:

1. if ui is universal, for some 1 ≤ i ≤ k−1, then ui = vj, for some 1 ≤ j ≤ m−1
and ui+1 = vj+1;

2. either the win of S is already secured after the play vu1u2 . . . uk or uk is a
universal vertex which does not occur in vu1u2 . . . uk−1, and S has a winning
strategy after the play vu1u2 . . . uk.

Let us first show that Lemma 5 follows from 6. Notice that E has no opportu-
nity between vm and uk in the lemma to make any decisions about the way the
moves are being made. They are either made by S, or are already determined,
since the strategy of E is persistent. So, once the play v has been played, it is
up to S if vu1u2 . . . uk is played.

Notice also, that if v = v1v2 . . . vm is a play such that vm is a universal
vertex and S has a winning strategy after v is played, then either E enters
some existential vertex sooner than after n new steps, or he will enter a loop of
universal vertices, and then the win of S will be secured after at most nl new
steps (where l is the 3-depth of ϕ).

Hence Lemma 5 follows from Lemma 6 and from the fact that there are only
less than n universal vertices in G.

Proof of Lemma 6. If the play v is like in the lemma then one can clearly find a
continuation of this play vvm+1 . . . vm′ such that:

1. for each m + 1 ≤ i ≤ m′ − 1, if vi is universal then vi = vj for some
1 ≤ j ≤ m− 1 and vi+1 = vj+1,

2. either the win of S is already secured after the play vvm+1 . . . vm′ or vm′

is a universal vertex which does not occur in vvm+1 . . . vm′−1 and S has a
winning strategy after the play vvm+1 . . . vm′ .

Consider a directed graph H whose vertices are the elements of the sequence
vm+1 . . . vm′ and such that (w1, w2) is an edge of H if w1 is existential and
(w1, w2) is an edge of G, or if w1 is universal and the move from w1 to w2 was
already chosen by E as a part of his persistent strategy (i.e. w1 = vi and w2 =
vi+1 for some 0 ≤ i < m). Let ∼ be an equivalence on the vertices of H such that
w1 ∼ w2 if w1 and w2 are reachable from each other inH. LetH0 beH/∼. For two
equivalence classes [w1]∼ and [w2]∼ in H0 define [w1]∼ Â [w2]∼ if [w1]∼ 6= [w2]∼
and w2 is reachable from w1 in H. Let now the sequence w1, w2, . . . ws be such
that w1 = vm+1, and wi+1 is the first element of vm+1 . . . vm′ which is right of wi

and such that wi+1 6∈ [wi]∼. Obviously [wi+1]∼ ≺ [wi]∼ and so s ≤ n. Now we
construct the sequence u1, u2 . . . uk: to do it, we first visit each element of [w1]∼.
Then we visit them again, and again, l times, where l is like in Lemma 4. This is
possible since the elements of [w1]∼ are reachable from each other. Then we go
to [w2]∼ and again visit each vertex of this class l times. Then we do the same
for [w3]∼, . . . [ws]∼. We stop at uk = vm′ . The resulting sequence u1, u2 . . . uk is
obviously polynomially long. It is easy to see that if w v v0v1 . . . vmvm+1 . . . vm′

holds, for some word w with |w| ≤ l, then also w v v0v1 . . . vmu1 . . . uk holds.
Our claim follows now from Lemma 4. ut

5 Proof of Theorem 1

Suppose that M is a Turing machine which, for an input z of length n, uses
exponential space, that is space bounded by 2nk

for some integer k. We can
assume, without the loss of generality, that the tape alphabet of M is {0, 1},
and that M has only one accepting configuration. In this configuration the state
of M is qf , and all the cells of the tape contain 0.

Let z ∈ {0, 1}∗ be the input word. Let n = |z| and N = nk. We will construct
a game (Gz, ϕz) in which S has a winning strategy if and only if M does not
accept z. It is easy to verify that this construction can be done in logarithmic
space with respect to n.

The game graph Gz, and the formula ϕz will be constructed in such a way
that in order to keep ϕz false, E will need to declare in each stage s (from 0
up to 2N − 1) of the play a triple ā(s), b̄(s), c̄(s) of configurations of M . This
declaration will be understood as his claim that l: b̄(s) is reachable from ā(s) in
no more than 2(2N−s+1) computation steps of M , and r: c̄(s) is reachable from
b̄(s) in such a number of steps. E will be also forced to declare ā(0) as the initial
configuration of M on z and c̄(0) as the unique accepting configuration.

At the end of each stage S will be allowed to say if he wishes to see the
proof of l or the proof of r. If he decides on l then E will be supposed to declare
ā(s+1) = ā(s) and c̄(s+1) = b̄(s). Analogously, if S decides on r after the stage
s, then E will be supposed to declare ā(s + 1) = b̄(s) and c̄(s + 1) = c̄(s). If E

p

v0r r r r- - - - -
0 0 0

· · ·

6

| {z }
2N

p

v1r
r

r

0

1

¡¡µ
@@R

-

-

A
A
AU¢
¢
¢̧
r

r

0

1

-

-

A
A
AU¢
¢
¢̧

-

-

A
A
AU¢
¢
¢̧

r

r

0

1

r· · · @@R

¡¡µ

| {z }
2N

t1 t1 t1

tm tm tm

r

r

r

¢
¢
¢̧

A
A
AU

­
­­Á

J
Ĵ

¡¡µ
@@R

...

r

r

...

-

-

HHj

©©*

@@R

¡¡µ

B
B
B
BBN

£
£
£
££±

r

r

...

-

-

HHj

©©*

@@R

¡¡µ

B
B
B
BBN

£
£
£
££± r

¢
¢
¢̧

A
A
AUv2 v3 v4- r

?b
b

?b
Objection

Graph

- b¡¡µ
@@R

b

b
r

l

r

@@R
¡¡µ

6

-

Fig. 3. Graph Gz

would like to cheat here, then finally, when the play reaches the objection graph,
S will have the possibility of raising objection, and proving that he was cheated.
Finally, ϕz will be written in such a way that the only chance for E to win will
be either to declare ā(2N − 1) and c̄(2N − 1) as equal, or such that ā(2N − 1)
yields c̄(2N − 1) in one computation step of M .

5.1 The Game Graph

Let T = {t1, . . . , tm} = {0, 1}×(Q∪{−}), where Q is the set of states of M , and
‘−’ is not an element of Q. Notice that x̄ ∈ T 2N

can represent a configuration of
M . In fact, x̄0, . . . x̄2N−1 represent values of tape cells. If the head of M is over
the i-th cell containing y, and the state of M is q, then x̄i = (y, q). For all the
other cells x̄i has the form (y,−), where y is the content of cell i.

Graph Gz is shown in Fig. 3. Vertices are labeled by those atomic propositions
which are true at them. Vertices labeled by t1, . . . , tm are placed in three columns
in such a way that each vertex in the first and the second column is connected
with every vertex in the next column. Solid circles represent universal vertices,
whereas empty circles are existential. The definition of the objection graph will
be given later. Notice that, whenever E is in the vertex v1 labeled by p, he can
choose any path of length 2N of vertices labeled by 0 or 1, thus he can choose
any sequence x̄ ∈ {0, 1}2N which can be treated as a binary representation of a
pair (s, c), where 0 ≤ s, c < 2N . In that case we say that E declares (s, c). The
play begins in the vertex v0, also labeled by p, where E has to declare (0, 0).

Definition 7. E plays fair if and only if the following conditions are satisfied:

(i) each time he is in v1, he declares a pair (s, c) which is the immediate
successor of (s′, c′) declared previously (i.e. s = s′ and c = c′ + 1 if c′ <
2N − 1, and s = s′ + 1 and c = 0 if c′ = 2N − 1),

(ii) each time he is in v3, immediately after declaring (s, c) for c < 2N − 1, he
chooses v1,

(iii) each time he is in v3, immediately after declaring (s, 2N−1) for s < 2N−1,
he chooses v4,

(iv) each time he is in v3, immediately after declaring (2N − 1, 2N − 1), he
chooses the vertex labeled by b.

As one can see, if E plays fair, then he declares each pair from (0, 0) up
to (2N − 1, 2N − 1) in increasing order. After declaring (2N − 1, 2N − 1), E
terminates the play choosing the vertex labeled by b. Furthermore, E , each time
after declaring (s, 2N − 1), goes to vertex v4, where S can choose between the
vertices labeled by l or r.

Definition 8. Suppose that E plays fair.
Define as a(s, i), b(s, i) and c(s, i) the three elements of T which are la-

bels of the vertices selected by E from the first, second and third column im-
mediately after declaring (s, i). Let ā(s) = 〈a(s, 0), . . . , a(s, 2N − 1)〉, b̄(s) =
〈b(s, 0), . . . , b(s, 2N − 1)〉, and c̄(s) = 〈c(s, 0), . . . , c(s, 2N − 1)〉. We say that E
declares configurations ā(s), b̄(s), c̄(s) in stage s.

We say that S answers h ∈ {l, r} in stage s if and only if he chooses vertex
labeled by h immediately after E declares (s, 2N − 1). In that case we denote h
by h(s).

It is easy to check that if E plays fair then, for each stage s, ā(s), b̄(s), c̄(s)
are well-defined, and for each stage s < 2N − 1, also h(s) is well-defined.

Definition 9. E plays according to M and z if and only if he plays fair, and:

(v) ā(0) corresponds to the initial configuration of M on the input z, and c̄(0)
corresponds to the accepting configuration of M ,

(vi) either ā(2N − 1) = c̄(2N − 1), or the configuration ā(2N − 1) yields the
configuration c̄(2N − 1) in one computation step of M ,

(vii) for each stage s ∈ {0, . . . , 2N − 2}, if h(s) = l then ā(s + 1) = ā(s) and
c̄(s + 1) = b̄(s), and similarly, if h(s) = r then ā(s + 1) = b̄(s) and
c̄(s + 1) = c̄(s).

Lemma 7. E is able to play according to M and z if and only if M accepts z.

Proof. Rewrite the proof of the fact that EXPSPACE = AEXPTIME. ut

We will call a formula γ of LTL+(3, d,∨,∧) local if it is small (polynomial)
and has the form 3γ′ where γ′ is 3-free. By local formulas we can express
existence, on an infinite play, of some patterns of polynomial length. One can
see that there exists a disjunction ϕ1 of local formulas which is valid for exactly
those plays which violate one of the conditions (i)-(vi) of Definitions 7 and 9.

Example. The subformula of ϕ1 which holds if and only if condition (ii) of
Definition 1 is violated could be as follows:

3
(
p ∧ (dN+10 ∨ · · · ∨ d2N0) ∧ (d2N+7(¬p))

)
,

-
qb
@@R
¡¡µ

b

b

0

1

-

-

A
AAU¢
¢¢̧

-

-

b

b

0

1

b· · · @@R
¡¡µ

| {z }
2N

t1 t1 t1

tm tm tm

b

b

b

¢
¢¢̧

A
AAU

­
­Á

J
Ĵ

¡¡µ
@@R

...

b

b

...

-

-

HHj

©©*

@@R

¡¡µ

B
B
BBN

£
£
££±

b

b

...

-

-

HHj

©©*

@@R

¡¡µ

B
B
BBN

£
£
££±

bq
′

¢
¢¢̧

A
AAUb

@@R
¡¡µ

b

b

0

1

-

-

A
AAU¢
¢¢̧

-

-

b

b

0

1

b· · · @@R
¡¡µ

| {z }
2N

t1 t1 t1

tm tm tm

b

b

¢
¢¢̧

A
AAU

­
­Á

J
Ĵ

¡¡µ
@@R

...

b

b

...

-

-

HHj

©©*

@@R

¡¡µ

B
B
BBN

£
£
££±

b

b

...

-

-

HHj

©©*

@@R

¡¡µ

B
B
BBN

£
£
££±

r

¢
¢¢̧

A
AAU

±°
²¯
°

Fig. 4. The Objection Graph

where dk0 stands for the sequence of operators d of length k followed by 0. ut
Things are more complicated with point (vii) of Definition 9: the formula

written in the naive way would be exponentially big. That is because in this
case we have to express some relation between two remote fragments of a play.
To deal with this problem, we need some participation of S. That is the point
where the objection graph is used. In the next section we give the description of
the objection graph, the definition of ϕ2, and show that S can make ϕ2 true if
and only if point (vii) of Definition 9 is violated.

Now, we can define the winning condition of our game:

ϕz = ϕ1 ∨ ϕ2.

The following lemma is a consequence of Lemma 7, and completes the proof of
Theorem 1.

Lemma 8. S has the winning strategy in game (Gz, ϕz) if and only if M does
not accept z.

5.2 Raising Objections

In this section we describe a mechanism which allows S to raise an objection,
and consequently, to win the game whenever E violates point (vii) of Definition
9 for some pair of stages s and s+1. There are two symmetrical subcases: when
S answers l in the stage s, and when S answers r in this stage, and so ϕ2 will
be a disjunction of two symmetrical formulas ϕl and ϕr. We will show how to
write the first of them.

Once S enters the objection graph (Fig. 4) he first declares two numbers of
length N . We will call the numbers s1 and p1. Then he declares three elements
of T , call them a1, b1 and c1, then again two numbers of length N which we call
s2 and p2, and finally, before the play enters an infinite loop, he declares a2, b2

and c2, again elements of T . One can easily write a local formula ρ expressing
the fact that p1 = p2 and s1 + 1 = s2 but a1 6= a2 or b1 6= c2.

Assume that we have a formula ψq which is true in vertex v of an infinite play
v if and only if the pattern of length 2N + 4 beginning in the direct successor
of v is equal to the pattern of length 2N + 4 beginning in the direct successor of

the vertex where q is true. We consider here two patterns to be equal if the same
atomic propositions are true in respective vertices of the patterns. Let ψq′ be like
ψq but with q′ instead of q. We can write ϕl as: ρ∧3(p∧ψq ∧3(l∧3(p∧ψq′))).

Now, if indeed E violates point (vii) of Definition 9 in the way described in
the beginning of this subsection, then the strategy for S is to find the number
d of a position in the sequence where ā(s) is not equal to ā(s + 1), or where
b̄(s) is not equal to c̄(s + 1), enter the objection graph, declare s as s1, d as p1,
a(s, d), b(s, d), c(s, d) as a1, b1 and c1, then declare s + 1 as s2, again d as p2 and
finally a(s + 1, d), b(s + 1, d), c(s + 1, d) as a2, b2 and c2.

It remains to define formula ψq:

ψq =
2N+4∧

i=1

ψi
q,

where ψi
q =

(dis1 ∧3(q ∧ dis1)
)∨ · · · ∨ (disl ∧3(q ∧ disl)

)
, and {s1, . . . , sl} =

T ∪ {0, 1}.

References

[AT01] R. Alur and S. La Torre, Deterministic generators and games for LTL frag-
ments, Proceedings of LICS 2001, Springer Verlag, 2001, pp. 291–300.

[DS98] S. Demri and P. Schnoebelen, The complexity of propositional linear temporal
logics in simple cases, proceedings of STACS 1998, Springer Verlag, 1998,
pp. 61–72.

[MP91] Z. Manna and A. Pnueli, The temporal logic of reactive and concurent systems,
1991.

[PR89] A. Pnueli and R. Rosner, On the synthesis of a reactive module, Proceedings
of 16th ACM POPL, ACM Press, 1989, pp. 179–190.

[SC85] A. P. Sistla and E.M. Clarke, The complexity of propositional temporal logics,
The Journal of ACM 32 (1985), no. 733, 733–749.

[Tho90] W. Thomas, Automata on infinite objects, Handbook of Theoretical Com-
puter Science (J. van Leeuven, ed.), vol. B, Elsevier Science Publishers, 1990,
pp. 133–186.

[Tho95] W. Thomas, On the synthesis of strategies in infinite games, Proceedings of
STACS 1995, LNCS 900, Springer Verlag, 1995, pp. 1–13.

